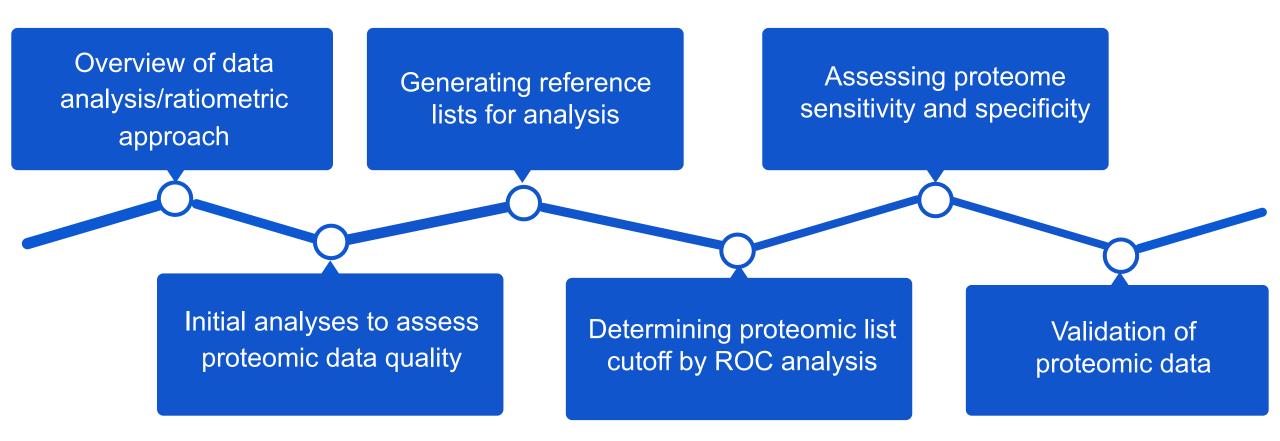
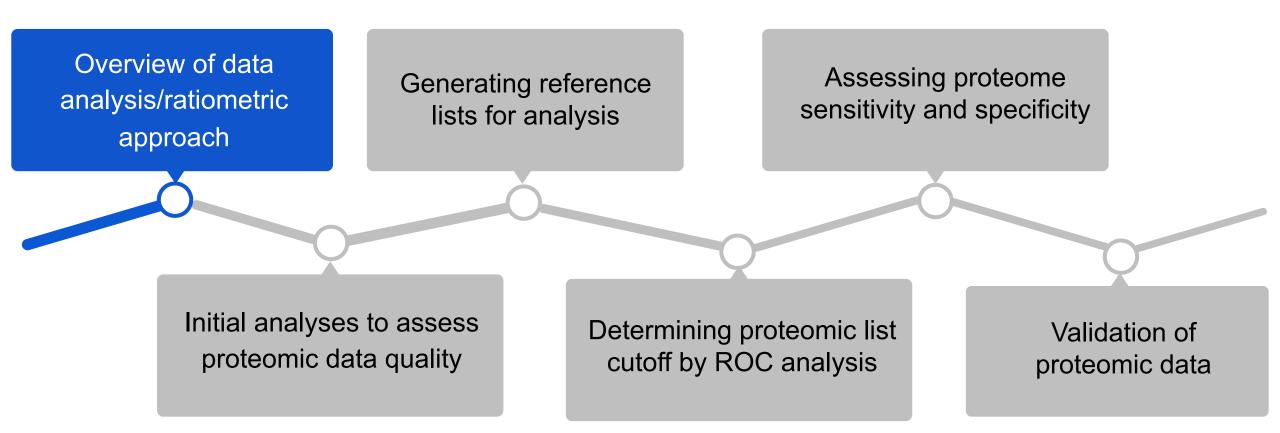
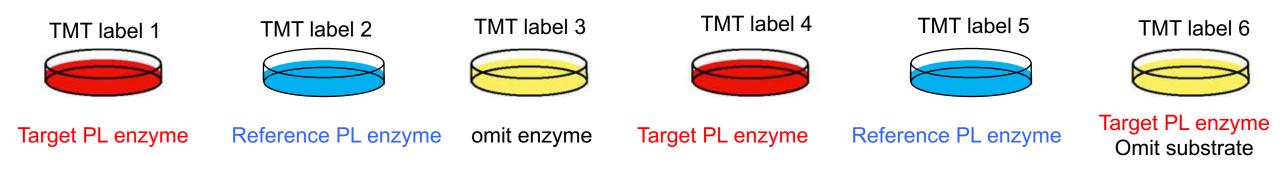
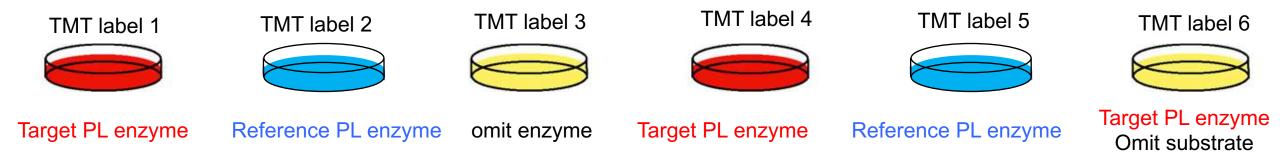

Neuro-omics Week 2: Analysis of proximity labeling data


Shuo Han Stanford University

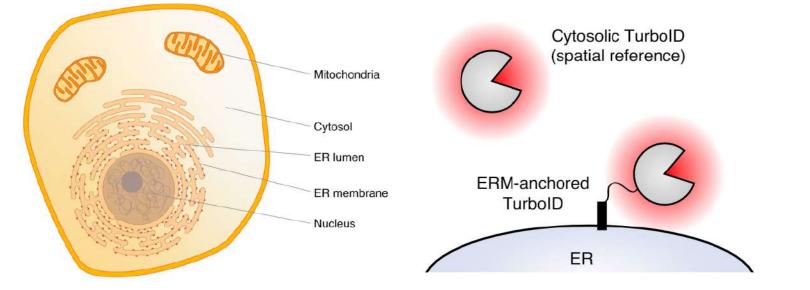
(Kelvin Cho, Wei Qin, Jiefu Li and Tess Branon)

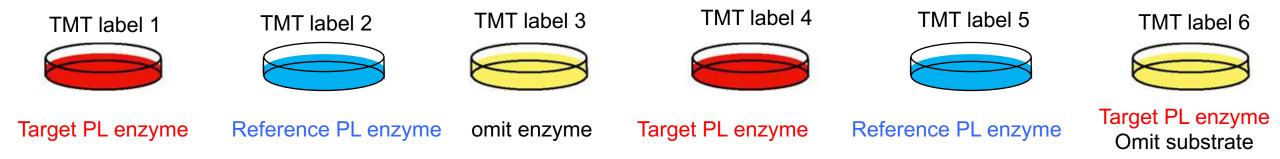



Proteomic data analysis for proximity labeling (PL) experiments:

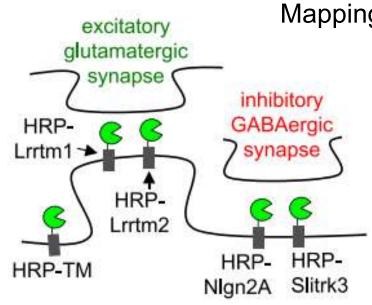


Proteomic data analysis for proximity labeling (PL) experiments:




Examples of "spatial reference" for ratiometric analysis

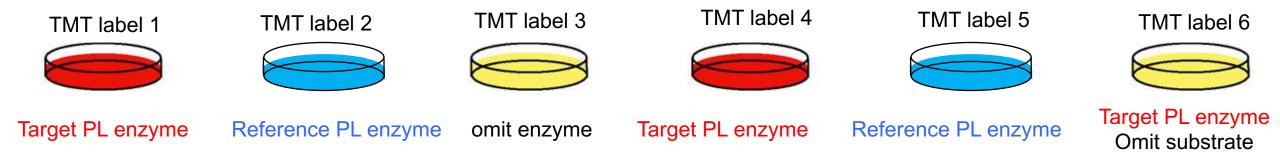
Mapping an open compartment- the ER membrane



Target construct: TurboID specifically targeted to the ERM

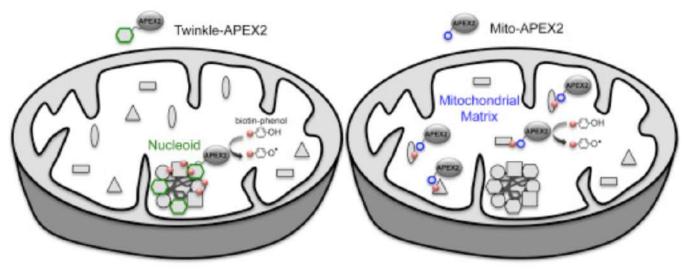
Reference construct: cytosolic TurboID (TurboID-NES)

Examples of "spatial reference" for ratiometric analysis



Mapping an open compartment- the synaptic cleft

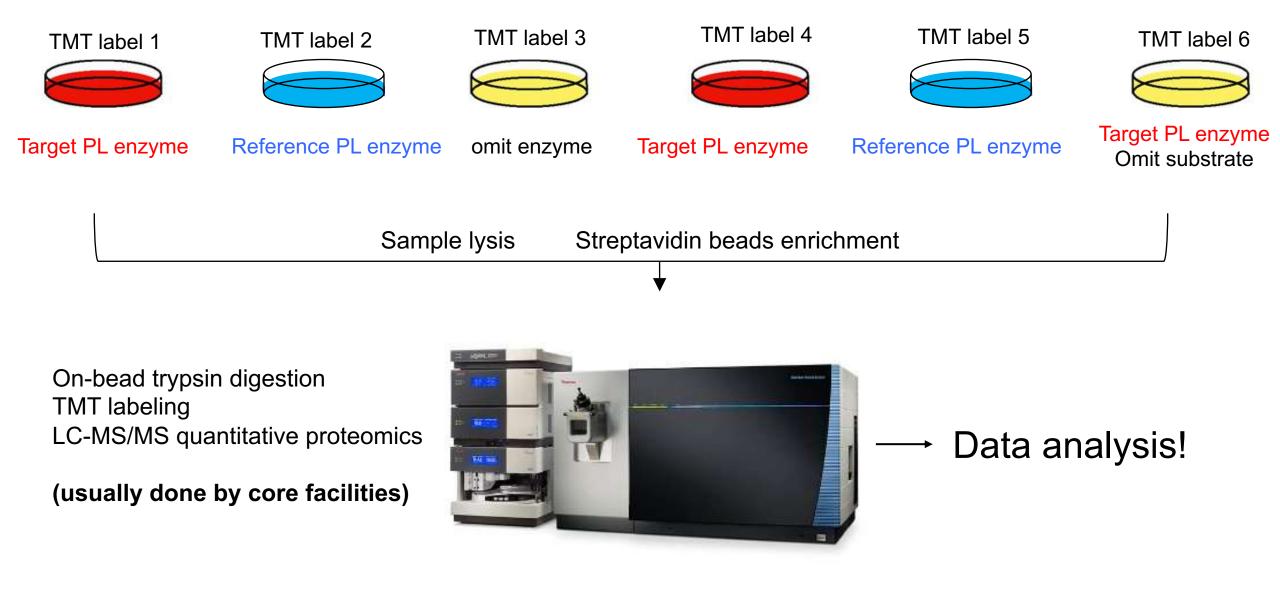
Target construct: HRP specifically targeted to the synaptic cleft


Reference construct: HRP on the entire cell surface

Loh et al, Cell 2016

Examples of "spatial reference" for ratiometric analysis

Mapping a protein complex- the mitochondrial nucleoid



Han et al, Cell Chem Biol 2017

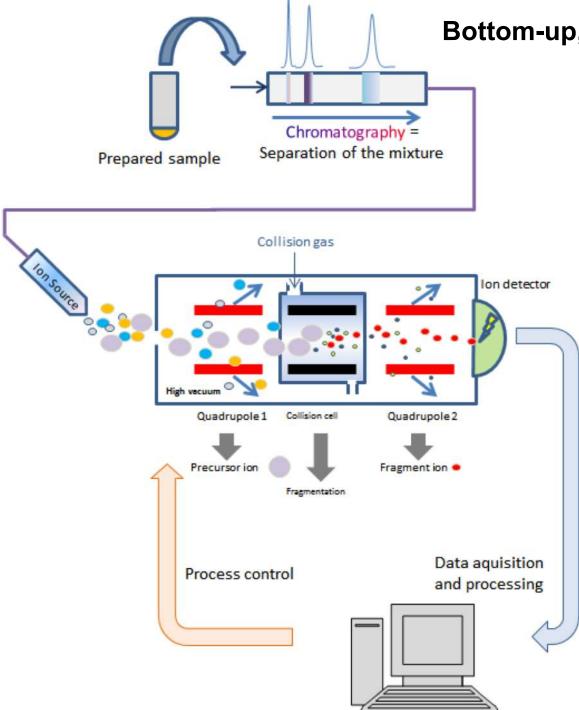
Target construct: APEX2 specifically targeted to the nucleoid

Reference construct: APEX2 everywhere in the mito matrix

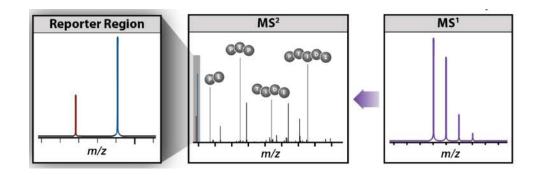
Overview of experimental workflow

Our collaborator: Steve Carr's lab at Broad Institute

We recommend doing quantitative, ratiometric proteomics for PL


- Biotinylation extent of a protein is governed by many factors in addition to proximity to the PL enzyme: size, pH of environment, # of sterically exposed Tyr/Lys, accessibility, etc.
- Label-free proteomics only looks at the extent to which proteins are biotinylated by a single enzyme source. Does NOT exclusively reflect SPATIAL information.

We recommend doing quantitative, ratiometric proteomics for PL


- Biotinylation extent of a protein is governed by many factors in addition to proximity to the PL enzyme: size, pH of environment, # of sterically exposed Tyr/Lys, accessibility, etc.
- Label-free proteomics only looks at the extent to which proteins are biotinylated by a single enzyme source. Does NOT exclusively reflect SPATIAL information.
- Quantitative, ratiometric approach cancels out all the other factors. The enrichment ratio reflects ONLY the spatial distance to the PL enzyme.

Typical quantitative proteomics methods: TMT, iTRAQ, SILAC

Bottom-up, quantitative proteomics

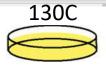
Some technical setups that we typically use

- **Peptide desalt**: C18 StageTips
- **Isotope labeling**: Tandem mass tag (TMT), up to 11-plex
- **MS**: Orbitrap Fusion Lumos from ThermoFisher
- Database searching software: Spectrum Mill
 MS Proteomics Workbench

Our collaborator: Steve Carr's lab at Broad Institute

Example of unprocessed data obtained from a typical experiment

Various TMT ratios


1

	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	BI	29N	B 7	BL	BM	BN	BO	BP	BQ	BR	BS	BT	BU	BV	BW	BX BY	
1	29N:130C1		30N:130C1.			127N:131	127C:131	128N:131	128C:131	129N:131	129C:131	130N:131	130C:131	UniProt A	c Species	UniProt Entry Name	Unique Peptides	
96	-0.175	1.2905		-0.275	1.4625	0.7435	0.025	0.815	1.1125	-0.0215	1.5425		0.275	Q917U2	DROME	CG1275, isoform C	2	-
97	0.074	1.1345	0.516	-0.036	1.2145	0.8205	-0.201	1.109	0.9185	0.1325	1.2005	0.423	0.036	A1Z935	DROME	CG8632, isoform B	13	
98	0.164	-0.5725		-0.195	-0.4165	-0.9265	0.625	0.054	-0.5585	0.4835	-0.3215		0.195	C6SUX5	DROME	GM01169p (Fragment)	2	
99	1.292	0.6065	0.822	0.239	0.5005	-0.1205	1.394	0.35	0.1515	1.1625	0.4825	0.315	-0.239	QOKIBO	DROME	CG34113, isoform O	8	
00	0.421	0.6825	-0.563	0.087	0.6235	-0.0765	0.251	1.078	0.5455	0.2335	0.5255	-0.699	-0.087	Q9W3M4	DROME	LD24308p	7	
01	0.249	0.9445	-0.564	0.038	0.9815	0.4065	0.238	-1.84	0.5085	0.1655	0.9655	-0.412	-0.038	Q7K0W1	DROME	CG8531	7	
02	0.223	1.6485	0.717	0.164	1.7905	1.2405	-0.395	1.341	1.2455	-0.0335	1.7005	0.968	-0.164	Q95T61	DROME	CG2082, isoform B	15	
03	0.496	1.3075	-0.052	0.359	1.2145	0.5115	0.057	0.407	0.6795	0.1585	1.0855	0.059	-0.359	Q0KI33	DROME	CG7956, isoform C	17	
04	0.038	2.4455	3.617	0.241	1.2575	0.6515	0.237	1.324	0.8075	-0.1165	1.3525	2.825	-0.241	Q917U4-5	DROME	Isoform E of Titin	7	
05	0.667	1.2305		0.237	1.2495	0.4065	0.147		0.5705	0.4315	1.0025		-0.237	Q7JRB2	DROME	CG14591, isoform A	2	
06	1.174	2.7635		1.239	1.5495	0.9375	-0.324	-0.27	1.2825	-0.0625	1.5345		-1.239	Q9NFR5	DROME	Nicotinic acetylcholine re	1	
07	1.376	1.0005		0.214	1.0915	0.2025	1.373		0.4525	1.1645	0.7965		-0.214	Q9V9V6	DROME	Kek6	1	
808	0.811	0.7795	0.692	0.099	0.6475	-0.0515	0.806	1.648	0.1155	0.6865	0.6675	0.665	-0.099	Q9VCT4	DROME	Klingon	19	
09	-0.178	0.3725		0.205	-0.2145	-0.4155	-0.07		-0.4315	-0.3805	0.1775		-0.205	Q9VPG0	DROME	CG5282	1	
10	0.573	0.4405	-1.592	0.209	0.1365	-0.3505	0.3		-0.1405	0.3665	0.2415	-1.558	-0.209	Q9W1B5	DROME	CG3209, isoform C	3	
11	0.501	-0.4005	-0.36	-0.039	-0.4815	-1.0795	0.728	- <mark>1.25</mark> 3	-0.7475	0.5195	-0.4795	-0.38	0.039	P45437	DROME	Coatomer subunit beta	7	
12	0.569	2.2625	-0.704	0.265	1.8975	1.0855	-0.253		1.5825	0.3905	2.0075	-0.844	-0.265	Q9W2E8	DROME	CG10320, isoform A	2	
13	0.478	0.0255		0.336	-0.1475	-0.3355	0.515	1.74	-0.2465	0.5355	-0.2835		-0.336	Q0K185	DROME	CG34114, isoform B	3	
14	-0.295	2.5215	2.398	-0.252	2.3735	2.1265	-0.465	1.296	3.0715	-0.0225	2.5545	2.275	0.252	B7FNQ3	DROME	RE33133p	12	
15	0.047	-1.0235	-1.442	-0.158	-0.8195	-1.3325	0.62	-2.751	-1.1215	0.3665	-0.8515	-1.405	0.158	Q9VA91	DROME	40S ribosomal protein S7	8	
16	0.398	2.1145		0.282	1.9715	1.2545	-0.114		1.4995	0.1175	1.8425		-0.282	Q9VY22	DROME	CG15890	1	
17	0.013	0.2555	1.398	-0.276	0.7365	0.2695	0.266	0.281	0.6585	0.1745	0.7255	1.879	0.276	Q5LJX9	DROME	CG2893, isoform B (Fragr	4	
18	0.022	1.3765	-0.595	0.289	1.1905	0.6975	-0.428	0.892	0.9425	-0.2325	1.1625	-0.996	-0.289	Q9W0L6	DROME	CG13907	10	-
19	0.848	0.4835	0.027	0.348	0.2205	-0.3955	0.551	0.048	0.1055	0.4425	0.2395	0.339	-0.348	Q94887	DROME	Neurexin-4	33	
20	-0.44	0.9195	2.345	-0.295	1.4905	0.9275	-0.424	1.121	1.2195	-0.1195	1.4015	2.036	0.295	Q8IGX6	DROME	RE09889p	9	
21	0.177	1.0195	0.01	0.075	1.0195	0.2815	0.181	0.807	0.6805	0.1405	0.9615	0.012	-0.075	Q9V8R9	DROME	Protein 4.1 homolog	76	
22	0.118	1.3635	0.628	0.145	1.3075	0.7845	-0.146	0.988	0.9285	0.0235	1.3115	0.626	-0.145	P25455	DROME	1-phosphatidylinositol 4,	31	
23	0.368	1.5295	0.463	0.124	1.4095	0.8445	0.037	0.644	0.8955	0.2235	1.4875	0.578	-0.124	062619-2	DROME	Isoform B of Pyruvate kin	39	
24	0.151	1.5715	1.252	0.335	1.3815	0.6815	-0.391	1.473	0.8785	-0.1695	1.3525	0.844	-0.335	Q24418	DROME	Glutamate [NMDA] recep	17	
25	0.464	1.8335	0.968	0.263	1.4685	0.9835	0.029	1.737	1.1585	0.0815	1.5145	1.127	-0.263	062530	DROME	AP-50, isoform A	24	
26	0.621	1.6635	0.824	0.377	1.1725	0.4655	0.28		0.7075	0.2935	1.1465	0.238	-0.377	Q8IR72	DROME	CG32638	2	
27	-0.155	0.7645	-1.161	-0.269	1.0125	0.4045	0.359	2.067	0.4355	0.2615	1.0435	-0.9	0.269	Q8MQS1	DROME	GH14073p	2	
28	0.378	1.4875		0.082	1.5165	0.8395	-0.133	1.898	0.6615	0.2985	1.4155		-0.082	Q9VDV4	DROME	Anoctamin	1	

TMT label

~

Target PL enzyme

Reference PL enzyme

omit enzyme

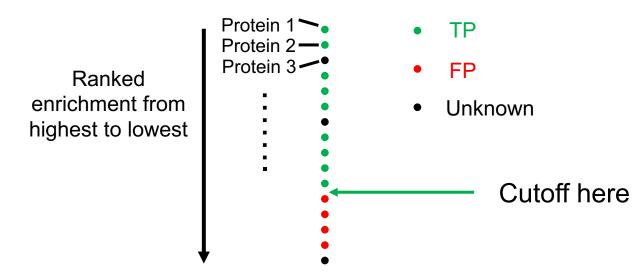
Example of unprocessed data obtained from a typical experiment

Various TMT ratios

M	<u>₽3(</u>	RI 1	29N		BL	BM	BN	BO	BP	BQ	BR	BS	BT	BU	BV	Protein nam	BX BY	
	29N:130C1	29C:130C 1	130N:130C1	81:130C 1			1						130C:131 U			UniProt Entry Name	Unique Peptides	
296	-0.175	1.2905		-0.275	1.4625	0.7435	0.025	0.815	1.1125	-0.0215	1.5425		0.275 Q	917U2	DROME	CG1275, isoform C	2	
97	0.074	1.1345	0.516	-0.036	1.2145	0.8205	-0.201	1.109	0.9185	0.1325	1.2005	0.423	0.036 A:	1Z935	DROME	CG8632, isoform B	13	
298	0.164	-0.5725		-0.195	-0.4165	-0.9265	0.625	0.054	-0.5585	0.4835	-0.3215		0.195 Ce	6SUX5	DROME	GM01169p (Fragment)	2	
299	1.292	0.6065	0.822	0.239	0.5005	-0.1205	1.394	0.35	0.1515	1.1625	0.4825	0.315	-0.239 Q	OKIBO	DROME	CG34113, isoform O	8	_
800	0.421	0.6825	-0.563	0.087	0.6235	-0.0765	0.251	1.078	0.5455	0.2335	0.5255	-0.699	-0.087 Q	9W3M4	DROME	LD24308p	7	
801	0.249	0.9445	-0.564	0.038	0.9815	0.4065	0.238	-1.84	0.5085	0.1655	0.9655	-0.412	-0.038 Q	7K0W1	DROME	CG8531	7	
302	0.223	1.6485	0.717	0.164	1.7905	1.2405	-0.395	1.341	1.2455	-0.0335	1.7005	0.968	-0.164 Q	95T61	DROME	CG2082, isoform B	15	
803	0.496	1.3075	-0.052	0.359	1.2145	0.5115	0.057	0.407	0.6795	0.1585	1.0855	0.059	-0.359 Q	OKI33	DROME	CG7956, isoform C	17	
104	0.038	2.4455	3.617	0.241	1.2575	0.6515	0.237	1.324	0.8075	-0.1165	1.3525	2.825	-0.241 Q	917U4-5	DROME	Isoform E of Titin	7	
805	0.667	1.2305		0.237	1.2495	0.4065	0.147		0.5705	0.4315	1.0025		-0.237 Q	7JRB2	DROME	CG14591, isoform A	2	
106	1.174	2.7635		1.239	1.5495	0.9375	-0.324	-0.27	1.2825	-0.0625	1.5345		-1.239 Q	9NFR5	DROME	Nicotinic acetylcholine re	1	
807	1.376	1.0005		0.214	1.0915	0.2025	1.373		0.4525	1.1645	0.7965		-0.214 Q	9V9V6	DROME	Kek6	1	
808	0.811	0.7795	0.692	0.099	0.6475	-0.0515	0.806	1.648	0.1155	0.6865	0.6675	0.665	-0.099 Q	9VCT4	DROME	Klingon	19	
09	-0.178	0.3725		0.205	-0.2145	-0.4155	-0.07		-0.4315	-0.3805	0.1775		-0.205 Q	9VPG0	DROME	CG5282	1	
10	0.573	0.4405	-1.592	0.209	0.1365	-0.3505	0.3		-0.1405	0.3665	0.2415	-1.558	-0.209 Q	9W1B5	DROME	CG3209, isoform C	3	
311	0.501	-0.4005	-0.36	-0.039	-0.4815	-1.0795	0.728	- <mark>1.25</mark> 3	-0.7475	0.5195	-0.4795	-0.38	0.039 P4	45437	DROME	Coatomer subunit beta	7	
312	0.569	2.2625	-0.704	0.265	1.8975	1.0855	-0.253		1.5825	0.3905	2.0075	-0.844	-0.265 Q	9W2E8	DROME	CG10320, isoform A	2	
313	0.478	0.0255		0.336	-0.1475	-0.3355	0.515	1.74	-0.2465	0.5355	-0.2835		-0.336 Q	0KI85	DROME	CG34114, isoform B	3	
314	-0.295	2.5215	2.398	-0.252	2.3735	2.1265	-0.465	1.296	3.0715	-0.0225	2.5545	2.275	0.252 B	7FNQ3	DROME	RE33133p	12	
315	0.047	-1.0235	-1.442	-0.158	-0.8195	-1.3325	0.62	-2.751	-1.1215	0.3665	-0.8515	-1.405	0.158 Q	9VA91	DROME	40S ribosomal protein S7	8	
16	0.398	2.1145		0.282	1.9715	1.2545	-0.114		1.4995	0.1175	1.8425		-0.282 Q	9VY22	DROME	CG15890	1	
317	0.013	0.2555	1.398	-0.276	0.7365	0.2695	0.266	0.281	0.6585	0.1745	0.7255	1.879	0.276 Q	5LJX9	DROME	CG2893, isoform B (Frag	n 4	
18	0.022	1.3765	-0.595	0.289	1.1905	0.6975	-0.428	0.892	0.9425	-0.2325	1.1625	-0.996	-0.289 Q	9W0L6	DROME	CG13907	10	
19	0.848	0.4835	0.027	0.348	0.2205	-0.3955	0.551	0.048	0.1055	0.4425	0.2395	0.339	-0.348 Q	94887	DROME	Neurexin-4	33	
320	-0.44	0.9195	2.345	-0.295	1.4905	0.9275	-0.424	1.121	1.2195	-0.1195	1.4015	2.036	0.295 Q	8IGX6	DROME	RE09889p	9	
321	0.177	1.0195	0.01	0.075	1.0195	0.2815	0.181	0.807	0.6805	0.1405	0.9615	0.012	-0.075 Q	9V8R9	DROME	Protein 4.1 homolog	76	
322	0.118	1.3635	0.628	0.145	1.3075	0.7845	-0.146	0.988	0.9285	0.0235	1.3115	0.626	-0.145 P2	25455	DROME	1-phosphatidylinositol 4,	5 31	
323	0.368	1.5295	0.463	0.124	1.4095	0.8 <mark>4</mark> 45	0.037	0.644	0.8955	0.2235	1.4875	0.578	-0.124 0	62619-2	DROME	Isoform B of Pyruvate kir	39	
24	0.151	1.5715	1.252	0.335	1.3815	0.6815	-0.391	1.473	0.8785	-0.1695	1.3525	0.844	-0.335 Q	24418	DROME	Glutamate [NMDA] rece	o 17	
325	0.464	1.8335	0.968	0.263	1.4685	0.9835	0.029	1.737	1.1585	0.0815	1.5145	1.127	-0.263 O	62530	DROME	AP-50, isoform A	24	
326	0.621	1.6635	0.824	0.377	1.1725	0.4655	0.28		0.7075	0.2935	1.1465	0.238	-0.377 Q	8IR72	DROME	CG32638	2	
327	-0.155	0.7645	-1.161	-0.269	1.0125	0.4045	0.359	2.067	0.4355	0.2615	1.0435	-0.9	0.269 Q	8MQS1	DROME	GH14073p	2	
28	0.378	1.4875		0.082	1.5165	0.8395	-0.133	1.898	0.6615	0.2985	1.4155		-0.082 Q	9VDV4	DROME	Anoctamin	1	

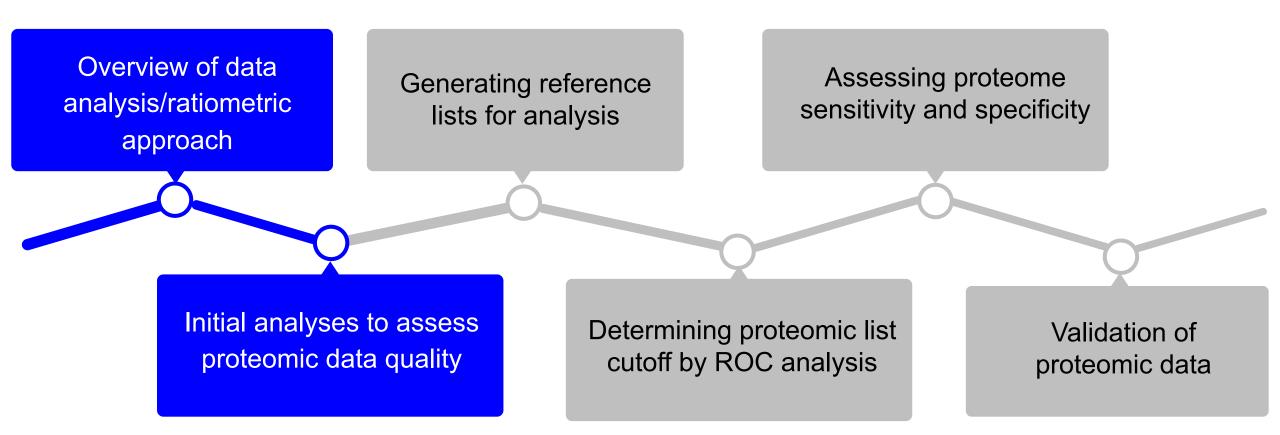
Spectrum Mill can export all the different TMT ratio combinations in excel format for all detected proteins

 Analysis depends on the *nature of your experimental design* and *what is already known* about the target proteome


- Analysis depends on the *nature of your experimental design* and *what is already known* about the target proteome
- If nothing is known about the target proteome and you don't know what to expect, then employ statistical methods to determine the cutoff
 - T-tests
 - Multivariate analysis
 - Other statistical approaches

- Analysis depends on the *nature of your experimental design* and *what is already known* about the target proteome
- If nothing is known about the target proteome and you don't know what to expect, then employ statistical methods to determine the cutoff
 - T-tests
 - Multivariate analysis
 - Other statistical approaches

Example: using proximity labeling to profile a previously uncharacterized organelle contact site or map the composition of an unknown protein complex

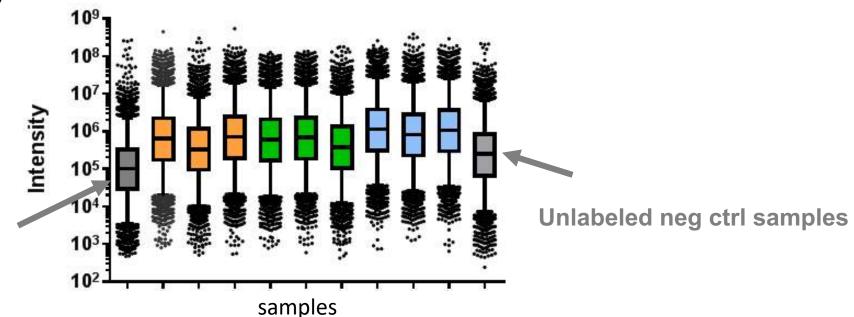

- Analysis depends on the *nature of your experimental design* and *what is already known* about the target proteome
- If an adequate amount of prior knowledge exists for the target proteome, receiver operator characteristic (ROC)-based quantitative analysis can produce highly specific proteomes

- Analysis depends on the *nature of your experimental design* and *what is already known* about the target proteome
- If an adequate amount of prior knowledge exists for the target proteome, receiver operator characteristic (ROC)-based quantitative analysis can produce highly specific proteomes
 - Need to curate a list of true positive and false positive proteins to determine cutoff

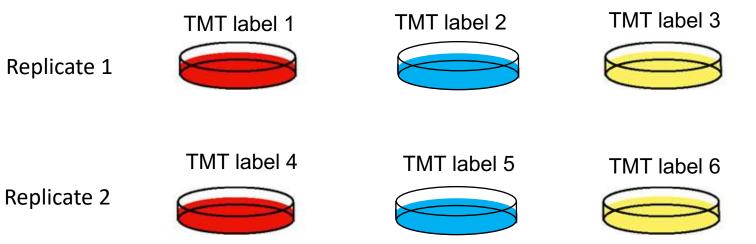
Proteomic data analysis for proximity labeling (PL) experiments:

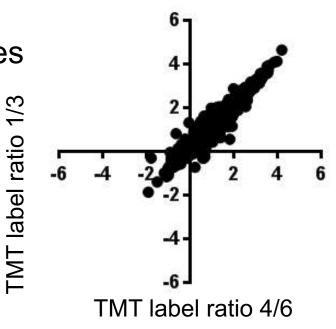
Preliminary processing of MS data

- Remove proteins with less than 2 unique peptides
- Remove proteins that are not from species being mapped
- Remove common contaminants e.g. human keratin

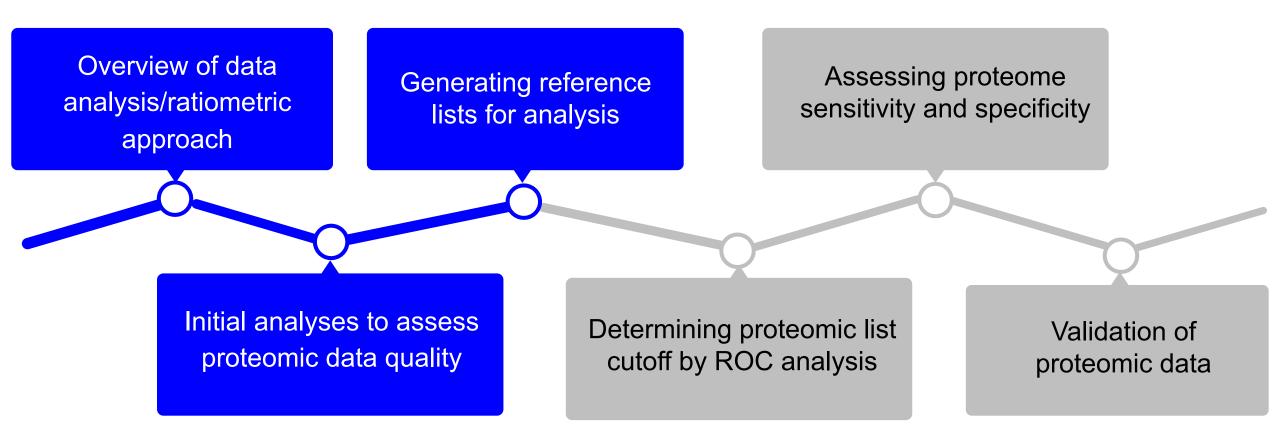

4	BH	BI	BJ	ВК	BL	BM	BN	BO	BP	BQ	BR	BS	BT	BU	BV	BW	BX	BY
1	129N:130C1	29C:130C	130N:130C	131:130C	126:131	127N:131	127C:131	128N:131	128C:131	129N:131	129C:131	130N:131	130C:131	UniProt A	c Species	UniProt Entry Name	Unique Pe	ptides
96	-0.175	1.2905		-0.275	1.4625	0.7435	0.025	0.815	1.1125	-0.0215	1.5425		0.275	Q917U2	DROME	CG1275, isoform C	2	
97	0.074	1.1345	0.516	-0.036	1.2145	0.8205	-0.201	1.109	0.9185	0.1325	1.2005	0.423	0.036	A1Z935	DROME	CG8632, isoform B	13	
98	0.164	-0.5725		-0.195	-0.4165	-0.9265	0.625	0.054	-0.5585	0.4835	-0.3215		0.195	C6SUX5	DROME	GM01169p (Fragment)	2	
99	1.292	0.6065	0.822	0.239	0.5005	-0.1205	1.394	0.35	0.1515	1.1625	0.4825	0.315	-0.239	QOKIBO	DROME	CG34113, isoform O	8	
00	0.421	0.6825	-0.563	0.087	0.6235	-0.0765	0.251	1.078	0.5455	0.2335	0.5255	-0.699	-0.087	Q9W3M4	DROME	LD24308p	7	
01	0.249	0.9445	-0.564	0.038	0.9815	0.4065	0.238	-1.84	0.5085	0.1655	0.9655	-0.412	-0.038	Q7K0W1	DROME	CG8531	7	
02	0.223	1.6485	0.717	0.164	1.7905	1.2405	-0.395	1.341	1.2455	-0.0335	1.7005	0.968	-0.164	Q95T61	DROME	CG2082, isoform B	15	
03	0.496	1.3075	-0.052	0.359	1.2145	0.5115	0.057	0.407	0.6795	0.1585	1.0855	0.059	-0.359	Q0KI33	DROME	CG7956, isoform C	17	
04	0.038	2.4455	3.617	0.241	1.2575	0.6515	0.237	1.324	0.8075	-0.1165	1.3525	2.825	-0.241	Q9I7U4-5	DROME	Isoform E of Titin	7	
305	0.667	1.2305		0.237	1.2495	0.4065	0.147		0.5705	0.4315	1.0025		-0.237	Q7JRB2	DROME	CG14591, isoform A	2	

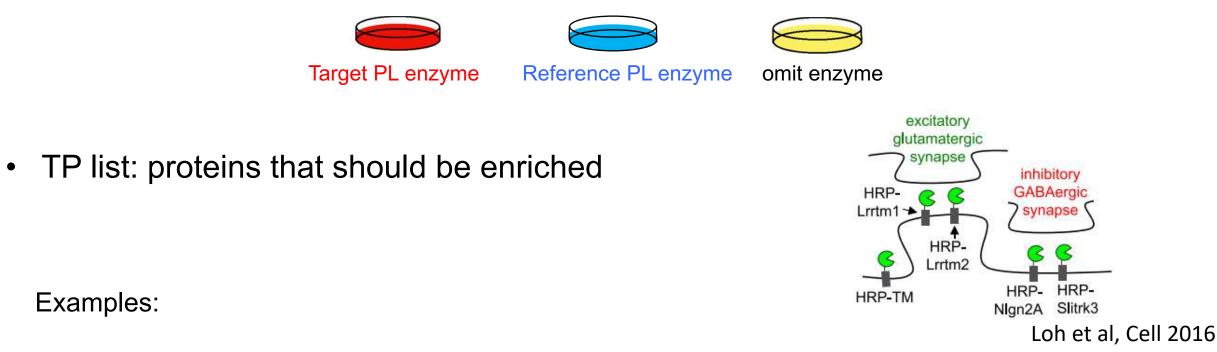
All these steps can be done by directly filtering the corresponding columns in Excel


 Number of proteins detected in experimental samples should be in the thousands


- Number of proteins detected in experimental samples should be in the thousands
- For TMT-labeling
 - >90% peptides should have label incorporated

- Number of proteins detected in experimental samples should be in the thousands
- For TMT-labeling
 - >90% peptides should have label incorporated
 - TMT intensities should correlate to amount of protein in each sample


- Number of proteins detected in experimental samples should be in the thousands
- For TMT-labeling
 - >90% peptides should have label incorporated
 - TMT intensities should correlate to amount of protein in each sample
 - TMT intensities should correlate across replicates


Proteomic data analysis for proximity labeling (PL) experiments:

- Analyze each individual TMT ratio separately, one replicate at a time.
- For a given ratio, rank the proteome data from highest to lowest. Always work with a ranked list!

	N:130C 12 -0.175 0.074 0.164 1.292 0.421	29C:130C 1 1.2905 1.1345 -0.5725	30N:130C1	-0.275		127N:131												
7 B 9 0 1	0.074 0.164 1.292	1.1345	0.516	-0 275							129C:131	130N:131				UniProt Entry Name	Unique Peptie	les
B 9 0 1	0.164 1.292		OFIC		1.4625	0.7435	0.025	0.815	1.1125	-0.0215	1.5425			Q917U2	DROME	CG1275, isoform C	2	
9 0 1	1.292	-0.5725	0.510	-0.036	1.2145	0.8205	-0.201	1.109	0.9185	0.1325	1.2005	0.423		A1Z935	DROME	CG8632, isoform B	13	
D 1				-0.195	-0.4165	-0.9265	0.625	0.054	-0.5585	0.4835	-0.3215		0.195	C6SUX5	DROME	GM01169p (Fragment)	2	
1	0.421	0.6065	0.822	0.239	0.5005	-0.1205	1.394	0.35	0.1515	1.1625	0.4825	0.315	-0.239	QOKIBO	DROME	CG34113, isoform O	8	
100		0.6825	-0.563	0.087	0.6235	-0.0765	0.251	1.078	0.5455	0.2335	0.5255	-0.699	-0.087	Q9W3M4	DROME	LD24308p	7	
2	0.249	0.9445	-0.564	0.038	0.9815	0.4065	0.238	-1.84	0.5085	0.1655	0.9655	-0.412	-0.038	Q7K0W1	DROME	CG8531	7	
-	0.223	1.6485	0.717	0.164	1.7905	1.2405	-0.395	1.341	1.2455	-0.0335	1.7005	0.968	-0.164	Q95T61	DROME	CG2082, isoform B	15	
3	0.496	1.3075	-0.052	0.359	1.2145	0.5115	0.057	0.407	0.6795	0.1585	1.0855	0.059	-0.359	Q0KI33	DROME	CG7956, isoform C	17	
4	0.038	2.4455	3.617	0.241	1.2575	0.6515	0.237	1.324	0.8075	-0.1165	1.3525	2.825	-0.241	Q917U4-5	DROME	Isoform E of Titin	7	
5	0.667	1.2305		0.237	1.2495	0.4065	0.147		0.5705	0.4315	1.0025		-0.237	Q7JRB2	DROME	CG14591, isoform A	2	
6	1.174	2.7635		1.239	1.5495	0.9375	-0.324	-0.27	1.2825	-0.0625	1.5345		-1.239	Q9NFR5	DROME	Nicotinic acetylcholine re	1	
7	1.376	1.0005		0.214	1.0915	0.2025	1.373		0.4525	1.1645	0.7965		-0.214	Q9V9V6	DROME	Kek6	1	
в	0.811	0.7795	0.692	0.099	0.6475	-0.0515	0.806	1.648	0.1155	0.6865	0.6675	0.665	-0.099	Q9VCT4	DROME	Klingon	19	
9	-0.178	0.3725		0.205	-0.2145	-0.4155	-0.07		-0.4315	-0.3805	0.1775		-0.205	Q9VPG0	DROME	CG5282	1	
c	0.573	0.4405	-1.592	0.209	0.1365	-0.3505	0.3		-0.1405	0.3665	0.2415	-1.558	-0.209	Q9W1B5	DROME	CG3209, isoform C	3	
1	0.501	-0.4005	-0.36	-0.039	-0.4815	-1.0795	0.728	-1.253	-0.7475	0.5195	-0.4795	-0.38	0.039	P45437	DROME	Coatomer subunit beta	7	
2	0.569	2.2625	-0.704	0.265	1.8975	1.0855	-0.253		1.5825	0.3905	2.0075	-0.844	-0.265	Q9W2E8	DROME	CG10320, isoform A	2	
3	0.478	0.0255		0.336	-0.1475	-0.3355	0.515	1.74	-0.2465	0.5355	-0.2835		-0.336	Q0K185	DROME	CG34114, isoform B	3	
4	-0.295	2.5215	2.398	-0.252	2.3735	2.1265	-0.465	1.296	3.0715	-0.0225	2.5545	2.275	0.252	B7FNQ3	DROME	RE33133p	12	
5	0.047	-1.0235	-1.442	-0.158	-0.8195	-1.3325	0.62	-2.751	-1.1215	0.3665	-0.8515	-1.405	0.158	Q9VA91	DROME	40S ribosomal protein S7	8	
6	0.398	2.1145		0.282	1.9715	1.2545	-0.114		1.4995	0.1175	1.8425		-0.282	Q9VY22	DROME	CG15890	1	
7	0.013	0.2555	1.398	-0.276	0.7365	0.2695	0.266	0.281	0.6585	0.1745	0.7255	1.879	0.276		DROME	CG2893, isoform B (Fragr	4	
8	0.022	1.3765	-0.595	0.289	1.1905	0.6975	-0.428	0.892	0.9425	-0.2325	1.1625	-0.996	-0.289	Q9W0L6	DROME	CG13907	10	
9	0.848	0.4835	0.027	0.348	0.2205	-0.3955	0.551	0.048	0.1055	0.4425	0.2395	0.339		Q94887	DROME	Neurexin-4	33	
)	-0.44	0.9195	2.345	-0.295	1.4905	0.9275	-0.424	1.121	1.2195	-0.1195	1.4015	2.036		Q8IGX6	DROME	RE09889p	9	
1	0.177	1.0195	0.01	0.075	1.0195	0.2815	0.181	0.807	0.6805	0.1405	0.9615	0.012		Q9V8R9	DROME	Protein 4.1 homolog	76	
2	0.118	1.3635	0.628	0.145	1.3075	0.7845	-0.146	0.988	0.9285	0.0235	1.3115	0.626		P25455	DROME	1-phosphatidylinositol 4,		
3	0.368	1.5295	0.463	0.124	1,4095	0.8445	0.037	0.644	0.8955	0.2235	1.4875	0.578				Isoform B of Pyruvate kin		
1	0.151	1.5715	1.252	0.335	1.3815	0.6815	-0.391	1.473	0.8785	-0.1695	1.3525	0.844		Q24418	DROME	Glutamate [NMDA] recep		
5	0.464	1.8335	0.968	0.263	1.4685	0.9835	0.029	1.737	1.1585	0.0815	1.5145	1.127		062530	DROME	AP-50, isoform A	24	
5	0.621	1.6635	0.824	0.377	1.1725	0.4655	0.28	2.1.57	0.7075	0.2935	1.1465	0.238		Q8IR72	DROME	CG32638	2	
8	-0.155	0.7645	-1.161	-0.269	1.0125	0.4045	0.359	2.067	0.4355	0.2615	1.0435	-0.9		Q8MQ51	DROME	GH14073p	2	
3	0.378	1.4875	1.101	0.082	1.5165	0.8395	-0.133	1.898	0.6615	0.2985	1.4155	0.5		Q9VDV4	DROME	Anoctamin	1	

• Cutoff is determined by True-Positive (TP) and False-Positive (FP) Lists

If mapping the synaptic cleft, TP list should be previously known synaptic cleft proteins.

If mapping the interactome of Lrrtm1, TP list should be known interacting partners of Lrrtm1.

• Cutoff is determined by True-Positive (TP) and False-Positive (FP) Lists

- TP list: proteins that should be enriched
- FP list1: proteins that should not be labeled at all by the target enzyme

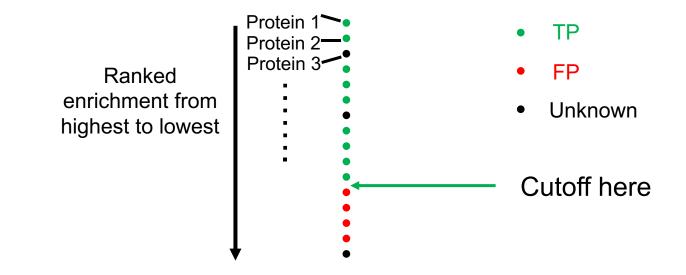
(in a different compartment separated by membrane)

Examples:

For synaptic cleft mapping, FP list1 could be mitochondrial matrix proteins+nuclear proteins+cytosolic proteins.

For mito nucleoid complex mapping, FP list1 could be nuclear proteins+secreted proteins.

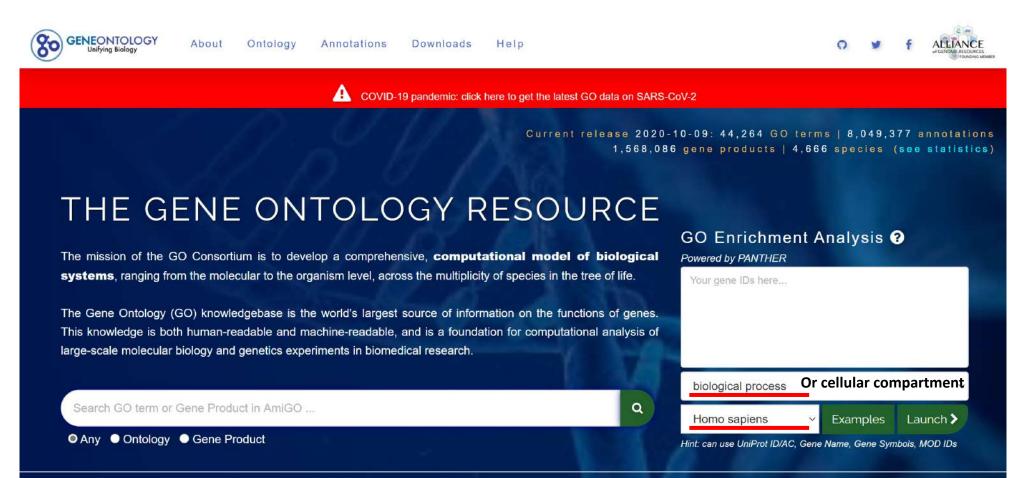
• Cutoff is determined by True-Positive (TP) and False-Positive (FP) Lists



- TP list: proteins that should be enriched
- FP list1: proteins that should not be labeled at all by the target enzyme
- FP list2: proteins that should be less enriched by target compared to reference (in a contiguous space as the target but less enriched)

For synaptic cleft mapping, FP list2 could be cell surface proteins that are NOT known to be synaptic.

For mito nucleoid complex mapping, FP list2 could be mito matrix proteins that are NOT known to be related to nucleoid.

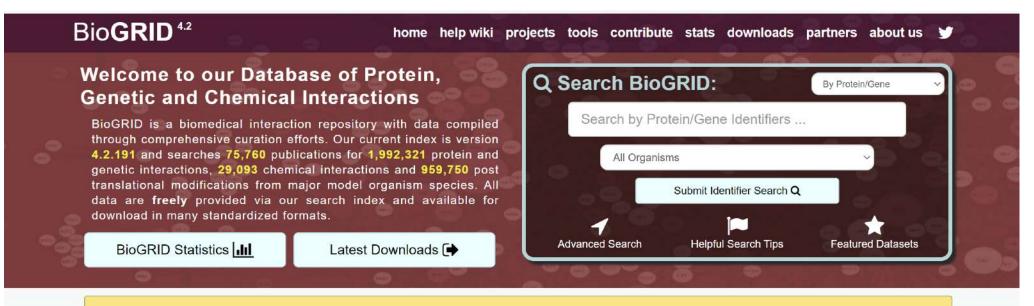

- Proteins at the top/bottom are more likely to be true/false hits
- Cutoff is determined by True-Positive (TP) and False-Positive (FP) Lists

Resources for making reference lists

Gene Ontology Resource

http://geneontology.org/

Results (?)


Results 🔞								
	Reference list	upload_1						
Uniquely Mapped IDS:	20851 out of 20851	<u>1</u> out of 1						
Unmapped IDs:	<u>0</u>	<u>0</u>	Click on the numbers to as	a tha				
Multiple mapping information:	0	<u>0</u>	Click on the numbers to se	-				
		-	list associated with each te	erm				
xport Table XML with user input ids	JSON with user input ids							
isplaying all results; <u>click here to disp</u>	lay only significant results							
				Homo sapiens (REF)		<u>u</u>	pload_1 (▼_Hi	erarc
<u>30 biological process complete</u>	<u>e</u>			<u>#</u>	<u># e</u>	xpected	Fold Enrichme	ent ±
ventral midline determination				1	1	.00	> 100	+
4 <u>regionalization</u>				335	1	.02	62.24	+
upattern specification proc	ess			443	1	.02	47.07	+
4multicellular organisma	process			<u>6985</u>	1	.33	2.99	+
<u> </u>	development			<u>4906</u>	1	.24	4.25	+
4anatomical structure	development			<u>5301</u>	1	.25	3.93	+
+developmental pro	ocess			5765	1	.28	3.62	+
+ventral midline developmen	<u>t</u>			5	1	.00	> 100	+
4central nervous system d	evelopment			1019	1	.05	20.46	+
hervous system develo	pment			2203	1	.11	9.46	+
<u> →system development</u>				4317	1	.21	4.83	+
mesenchymal to epithelial trans	sition involved in met	anephric renal vesicle formation		1	1	.00	> 100	+
+metanephric renal vesicle for	ormation			4	1	.00	> 100	+
understand				<u>6</u>	1	.00	> 100	+
4renal vesicle morphoge	enesis			<u>13</u>	1	.00	> 100	+
umorphogenesis of an	n epithelium			440	1	.02	47.39	+
<u> </u>	oment			1121	1	.05	18.60	+
+tissue developm	<u>ient</u>			1763	1	.08	11.83	+
+tissue morphogen	esis			550	1	.03	37.91	+
	ture morphogenesis			2182	1	.10	9.56	+
Granal vasiela davalor	ment			14	1	.00	> 100	+ *

80 G	ENEONTOLOGY Unitying Biology	ANTHER Classification System				
Home A		_	lelp/Tutorial		LOGIN REGISTER C	CONTACT US
PANTHI PANTHI	ER <u>Tool for grafting sequences</u> released! ER GENE LIST ? <u>Customize Gene list</u> .ist to: -Select-					
Display: Hits 1-30 Species Fi	of 1121 [page: (1) 2 3 4 5 6 7 8 9 10 >>] Nur	nber of mapped ids found 1121			Dow	nload t
cir all	<u>Gene ID</u>	Mapped IDs	<u>Gene Name</u> Gene Symbol Ortholog	PANTHER Family/Subfamily	PANTHER Protein Class	Species
1.	HUMAN HGNC=18669 UniProtKB=Q8N3R9	HUMAN HGNC=18669 UniProtKB=Q8N3R9	MAGUK p55 subfamily member 5 <u>MPP5</u> ortholog	MAGUK P55 SUBFAMILY MEMBER 5 (PTHR23122:SF14)	nucleotide kinase	Homo sapiens
2.	HUMAN HGNC=11796 UniProtKB=P10827	HUMAN HGNC=11796 UniProtKB=P10827	Thyroid hormone receptor alpha THRA ortholog	THYROID HORMONE RECEPTOR ALPHA (PTHR24082:SF42)	C4 zinc finger nuclear receptor	Homo sapiens
3.	HUMAN HGNC=6485 UniProtKB=015230	HUMAN HGNC=6485 UniProtKB=015230	Laminin subunit alpha-5 LAMA5 ortholog	LAMININ SUBUNIT ALPHA-5 (PTHR10574:SF261)	extracellular matrix protein	Homo sapiens
4.	HUMAN HGNC=17108 UniProtKB=Q8TE57	HUMAN HGNC=17108 UniProtKB=Q8TE57	A disintegrin and metalloproteinase with thrombospondin motifs 16 ADAMTS16 ortholog	A DISINTEGRIN AND METALLOPROTEINASE WITH THROMBOSPONDIN MOTIFS 16 (PTHR13723:SF140)	<u>metalloprotease</u>	Homo sapiens
5.	HUMAN HGNC=2514 UniProtKB=P35222	HUMAN HGNC=2514 UniProtKB=P35222	Catenin beta-1 CTNNB1 ortholog	CATENIN BETA-1 (PTHR45976:SF4)	-	Homo sapiens
6.	HUMAN HGNC=1507 UniProtKB=P55212	HUMAN HGNC=1507 UniProtKB=P55212	Caspase-6 CASP6 ortholog	CASPASE-6 (PTHR10454:SF206)	protease	Homo sapiens
7.	HUMAN HGNC=668 UniProtKB=P62745	HUMAN HGNC=668 UniProtKB=P62745	Rho-related GTP- binding protein RhoB RHOB ortholog	RHO-RELATED GTP- BINDING PROTEIN RHOB (PTHR24072:SF0)	small GTPase	Homo sapiens
8.	HUMAN HGNC=16778 UniProtKB=Q9BYR8	HUMAN HGNC=16778 UniProtKB=Q9BYR8	Keratin- associated protein 3-1 <u>KRTAP3-1</u> ortholog	KERATIN- ASSOCIATED PROTEIN 3-1 (PTHR23260:SF3)		Homo sapiens
9.	HUMAN HGNC=10888 UniProtKB=Q9NPC8	HUMAN HGNC=10888 UniProtKB=Q9NPC8	Homeobox protein_SIX2	HOMEOBOX PROTEIN	homeodomain transcription factor	Homo

Resources for making reference lists

BioGrid PPI Resource

https://thebiogrid.org/

BioGRID COVID-19 Coronavirus Curation Project

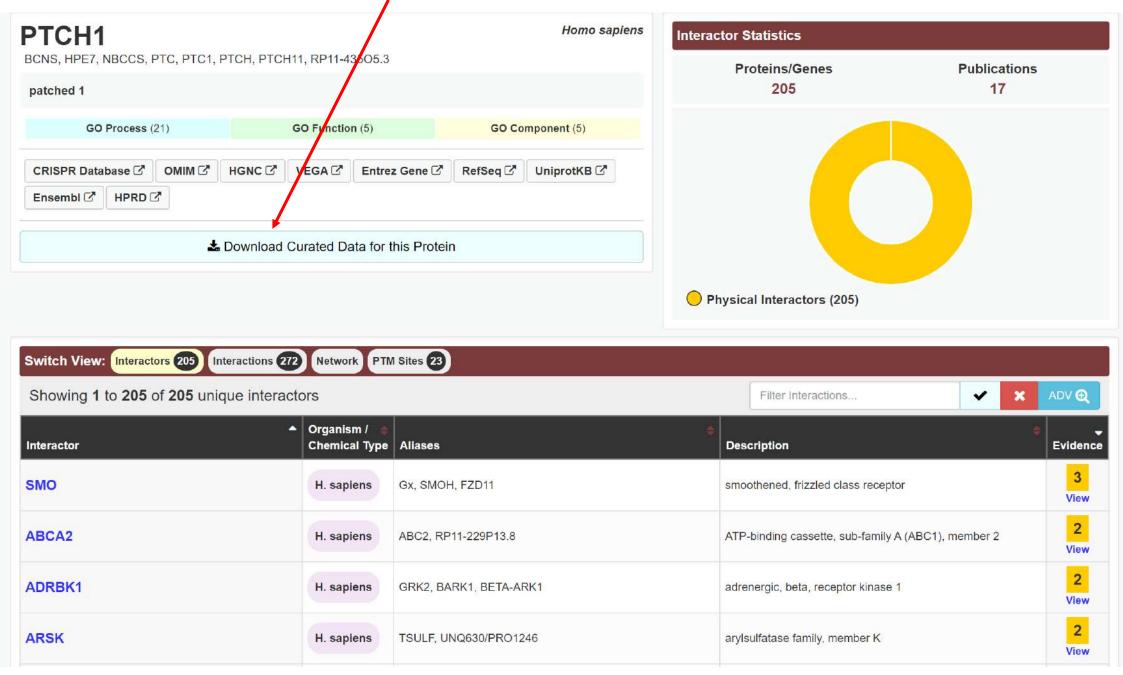
Search BioGRID for SARS-CoV-2 Protein Interactions | Download SARS-CoV-2 and Coronavirus-Related Interactions

Related Resources 🚠

BioGRID Themed Curation Projects

BioGRID themed curation projects focus on specific biological processes with disease relevance. Core genes/proteins central to the process are assembled with expert input and relevant publications curated for biological interactions. Themed curation projects are updated monthly and additional projects are generated on a regular basis.

Projects


CIHR IRSC

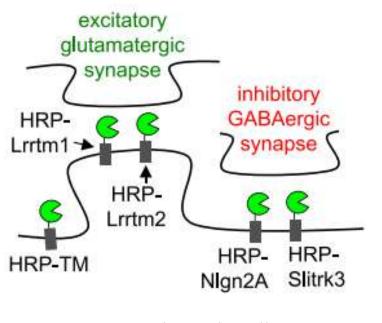
Partners 🚖

[morel

Learn more O

Download the list as excel

Resources for making reference lists


- Organelle or protein specific databases e.g. MitoCarta for mitochondrial proteome
- Existing literature search (Google, Pubmed, etc)

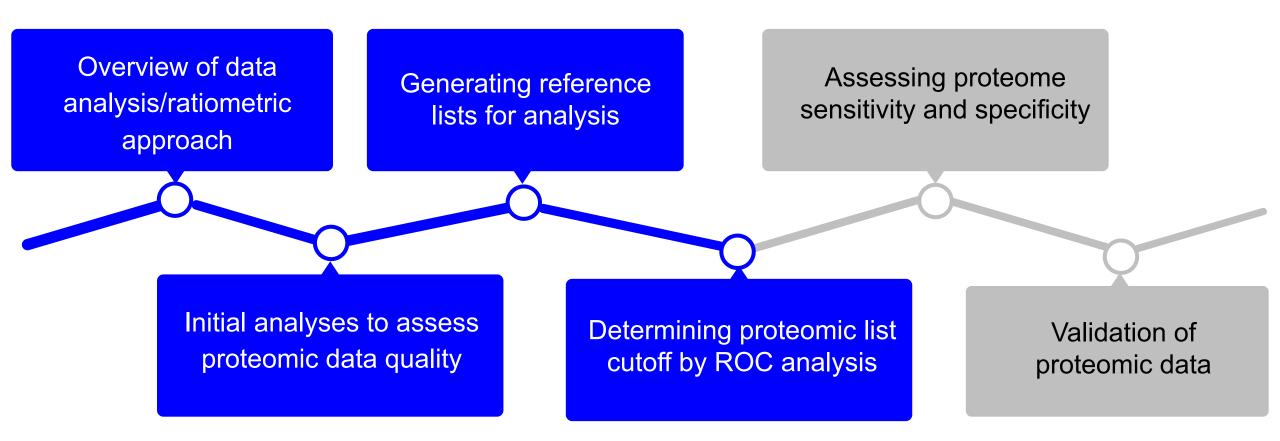
Important:

Both the TP and FP lists should be generated *a priori* to be unbiased and accurate.

The criteria need to be consistent throughout. Never include or reject a protein based on the PL proteomic data.

Example of making reference lists

Loh et al, Cell 2016


TP list: 176 known synaptic proteins based on GOCC and literature .

FP list1 (intracellular proteins that should be inaccessible to the BxxP radical): GOCC terms nucleus, mitochondria, peroxisome, lysosome, cytosol, endoplasmic reticulum, and Golgi. From this collection, removed proteins with "extracellular" annotation in GOCC, proteins present in the TP1 list, and proteins enriched in previous synapse studies by Bayés et al., 2012, Biesemann et al., 2014, Boyken et al., 2013, and Pirooznia et al., 2012.

FP list2 (non-synaptic cell surface proteins): GOCC terms: cell surface, extracellular space, extracellular region, external side of plasma membrane, extracellular matrix, extracellular vesicular, integral component of plasma membrane. From this collection, removed proteins present in the TP1 or FP1 lists, and proteins enriched in previous synapse studies by Bayés et al., 2012, Biesemann et al., 2014, Boyken et al., 2013, and Pirooznia et al., 2012.

Proteomic data analysis for proximity labeling (PL) experiments:

 Rank the proteome data by enrichment ratio from highest to lowest. Always work with a ranked list!

- Rank the proteome data by enrichment ratio from highest to lowest. Always work with a ranked list!
- Annotate the proteomic data using TP, FP lists.

- Rank the proteome data by enrichment ratio from highest to lowest. Always work with a ranked list!
- Annotate the proteomic data using TP, FP lists.
- Calculate TP and FP rate (TPR, FPR) for each ratio from high to low

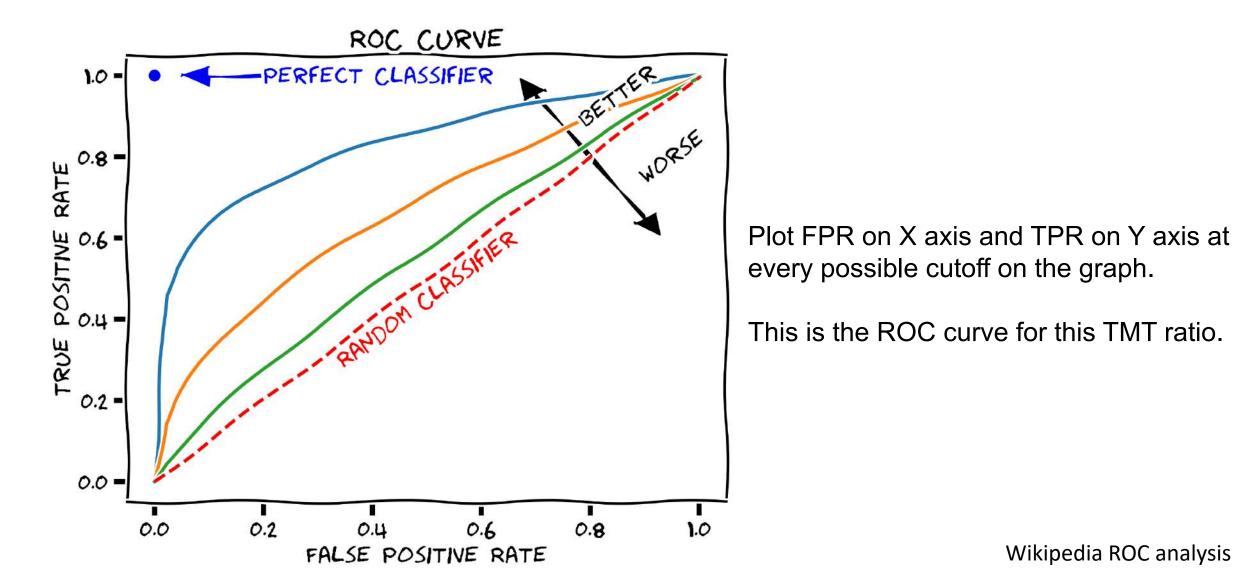
Equation:

TPR at ratio x= $\frac{cumulative \# of TP \ proteins \ above \ x}{total \# of TP \ in the \ proteomic \ data}$

 $FPR \text{ at ratio } x = \frac{cumulative \# of FP \text{ proteins above } x}{total \# of FP \text{ in the proteomic data}}$

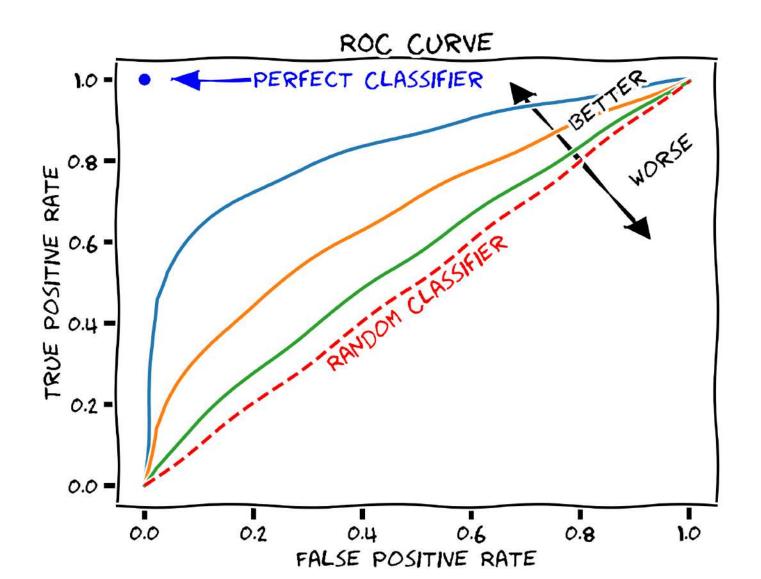
- Rank the proteome data by enrichment ratio from highest to lowest. Always work with a ranked list!
- Annotate the proteomic data using TP, FP lists.
- Calculate TP and FP rate (TPR, FPR) for each ratio from high to low

```
Ranked
                • TP • FP • Unknown
enrichment from
                                              Equation:
highest to lowest
                                                             cumulative # of TP proteins above x
                     TPR
                            FPR
      Protein 1
                                               TPR at ratio x=
      Protein 2
                                                              total # of TP in the proteomic data
      Protein 3<sup>•</sup>
                    4/8
                            0/5
                    7/8
                            1/5
                                                             cumulative # of FP proteins above x
                                              FPR at ratio x=
                                                              total # of FP in the proteomic data
```


TP (yes=1, no=0)

Cumulative # of TP proteins above a ratio

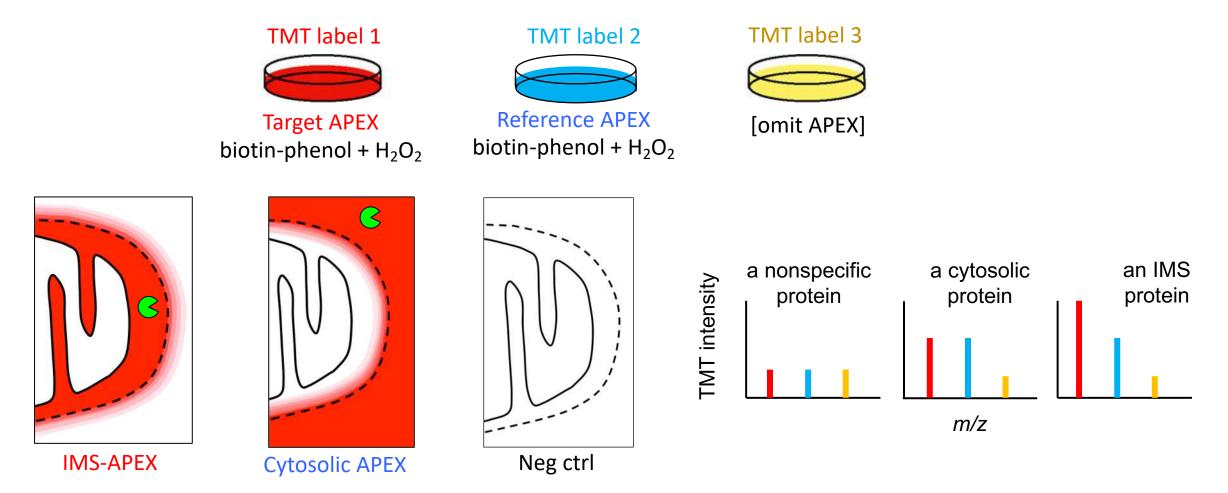
	A	В	С	D	E	G	Н	J K	L	М	Q	R	S	Т
1	2129C:127	126: 12 8C	127C:130C	129N:131	id	Symbol	accession_	numPepsUrspecies	entry_nam	ТР	FP	TPR	FPR	TPR-FPR
2	1.916	2.432	0.8635	4.2805	P10040	crb	P10040-2	2 DROME	lsoform B c	1	0			0.002985
3	1.999	1.49	0.5865	1.0165	Q9V3X2	Tsp96F	Q9V3X2	3 DROME	BcDNA.LD1	1	0	0.00597	0	0.00597
4	1.551	1.481	1.8295	0.9635	P15278	Fas3	P15278-2	8 DROME	lsoform B c	1	0	0.008955	0	0.008955
5	1.154	1.397	0.6625	0.4405	A1Z6S0	mim	A1Z6S0	2 DROME	CG33558, i	1	0	0.01194	0	0.01194
6	2.224	1.383	0.2555	-0.3135	D3PK82	CG1552	D3PK82	3 DROME	RH59554p	0	0			0.01194
7	1.517	1.35	0.4715	1.0275	Q9W0C1	nSyb	Q9W0C1	9 DROME	GH04664p	1	0	0.014925	0	0.014925
8	2.218	1.346	3.1485	1.6665	Q59DV8	Gfrl	Q59DV8	3 DROME	Munin	1	0		0	0.01791
9	1.754	1.296	-0.6795	-0.2385	Q9W2L6	CG9394	Q9W2L6	35 DROME	CG9394	0	0	0.01791	0	0.01791
10	0.702	1.281	2.9915	1.5515	DOUGE6	tnc	DOUGE6	4 DROME	Tenectin is	0	🔶 C	0.01791	0	0.01791
11	1.141	1.279	0.5895	0.7735	D5A7S0	CG17734	D5A7S0	2 DROME	MIP20553p	0		0.01791	0	0.01791
12	1.544	1.235	0.4875	0.0625	Q7K188	CG6329	Q7K188	6 DROME	CG6329, iso	0	0		-	0.01791
13	0.892	1.183	0.6105	0.9695	Q9VIU4	CG33116	Q9VIU4	2 DROME	CG33116	0	0		_	0.01791
14	1.634	1.182	0.4885	0.4715	A8DZ06	CG4587	A8DZ06	57 DROME	CG4587, iso	0			-	0.01791
15	1.067	1.174	0.1625	0.5235	P 4 8613	tipE	P48613	2 DROME	Protein tipl	1		0.020896	-	0.020896
16	1.004	1.141	0.0405	0.1095	Q9W436	Nep1	Q9W436	10 DROME	GH03315p	1		0.023881	-	0.023881
17	0.305	1.138	1.0735	0.8425	Q24323	Sema2a	Q24323	2 DROME	Semaphoriı	1		0.026866		0.026866
18	1.537	1.114	0.0385	0.2865	Q9VU13	CG42709	Q9VU13	6 DROME	CG17667, i	0		0.026866		0.026866
19	1.427	1.099	0.6405	0.3095	B7Z0L0	Fas1	B7Z0L0	41 DROME	Fasciclin 1,	0		0.026866	-	0.026866
20	1.186	1.098	1.0775	0.7135	Q9VY33	dpr8	Q9VY33	2 DROME	Dpr8	1		0.029851		0.029851
21	1.488	1.083	-0.5805	0.1375	Q7JRL9	CG31221	Q7JRL9	2 DROME	CG31221, i	0		0.029851		0.029851
22	1.098	1.07	-0.0115	0.2345	Q8IS44	Dop2R	Q8 S44-2	2 DROME	Isoform 60	1		0.032836	-	0.032836
23	1.2	1.062	0.6135	0.5215	Q8IQD3	CG32052	Q8IQD3	7 DROME	CG32052	0		0.032836	-	0.032836
24	0.491	1.06	0.0955	0.2065	A8DYJ6	side-VIII	A8DYJ6	8 DROME	CG12484, i	0		0.032836	_	0.032836
25	1.464	1.037	-0.2495	-0.0825	Q7KTJ7	Bsg	Q7KTJ7	15 DROME	Basigin, iso	1		0.035821	_	0.035821
26	1.42	1	0.2385	-0.0655	Q9W257	CG6044	Q9W257	2 DROME	CG6044, iso	0		0.035821	_	0.035821
27	1.041	0.995	1.5025	0.7935	Q9VDB7	CG16791	Q9VDB7	8 DROME	CG16791	0		0.035821		0.035821
28	1.368	0.977	0.4465	0.4565	Q7K0H4	stj	Q7K0H4	12 DROME	SD07723p	0		0.035821		0.035821
29	1.031	0.971	1.3585	0.9565	Q03445	GluRIA	Q03445	14 DROME	Glutamate	1		0.038806		0.038806
30	-0.09	0.957	-1.0405	-1.1565	Q7YZA2	CG7065	Q7YZA2	2 DROME	Uncharacte	0		0.038806		0.038806
31	1.024	0.957	1.5575	1.0375	Q9W3N2	dpr14	Q9W3N2	2 DROME	Dpr14	1	0	0.041791	0	0.041791


Receiver operator characteristic (ROC) analysis

Maximize the probability of enriching TP while minimizing the probability of including FP

Receiver operator characteristic (ROC) analysis

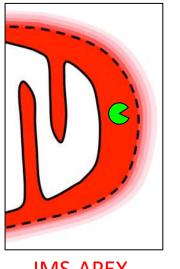
Maximize the probability of enriching TP while minimizing the probability of including FP

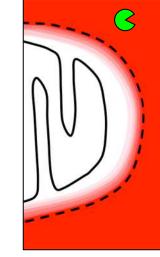

1. Always look for an upper left "elbow", which indicates that the experiment performed well.

Receiver operator characteristic (ROC) analysis

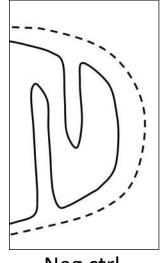
Maximize the probability of enriching TP while minimizing the probability of including FP

			• TP				
Ranked enrichment from highest to lowest	TPR	FPR	 FP Unknown TPR-FPR 	 Always look for an upper left "elbow", which indicates that the 			
Protein 1 Protein 2 Protein 3	- 4/8	0/5	0.5	experiment performed well.			
	- 6/8			2. Determining cutoff: The ratio at which TPR-FPR is			
	8/88/8	1/5 2/5	0.8	the greatest.			
	0/0	213	0.6				


Example: ratiometric tagging for open compartments

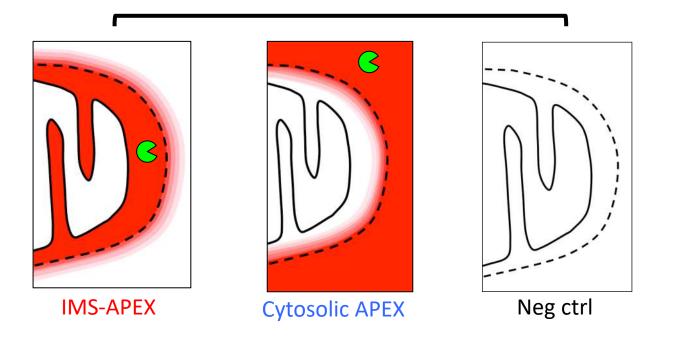

TMT ratio 1/3: Extent of biotinylation by IMS-APEX vs neg ctrl TMT ratio 1/2: Ratio of biotinylation by IMS-APEX vs cytosolic APEX

Three lists are needed for ratiometric analysis


- 1. TP list (e.g. previously known IMS proteins)
- 2. FP list1 that *should not be labeled at all* (e.g. nuclear proteins)
- 3. FP list2 that could be labeled by target enzyme, but **should not be preferentially enriched by target vs. reference**. (e.g. cytosolic proteins)

IMS-APEX

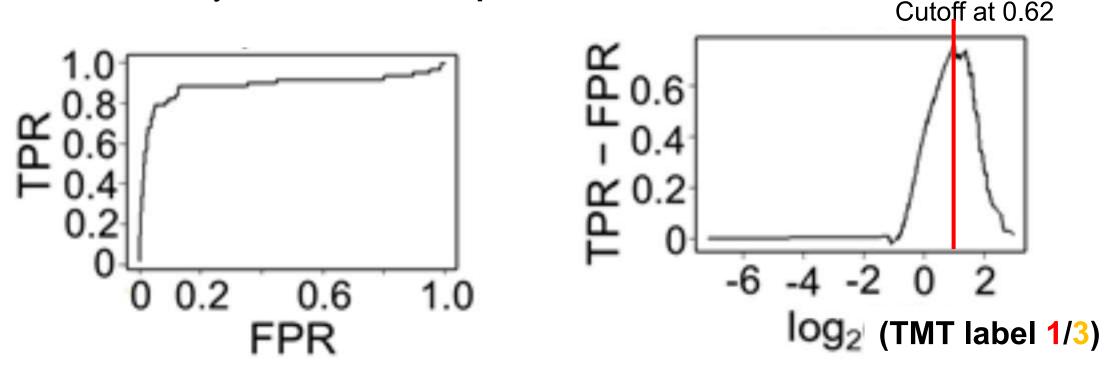
Cytosolic APEX



Neg ctrl

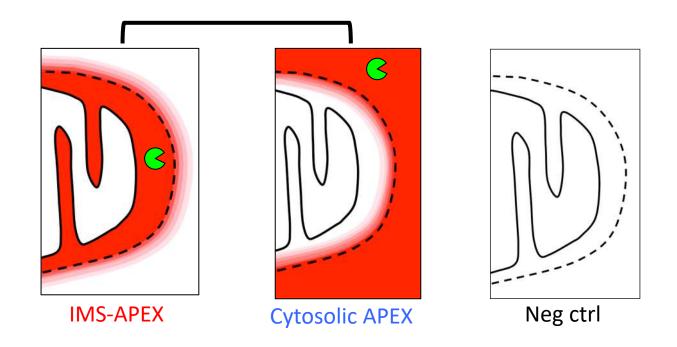
Step 1: determine target/neg ctrl cutoff

This cutoff gives a list of proteins that are enriched by target PL enzyme over nonspecific binders (i.e. proteins that are biotinylated by target).


Protocol: Rank **all the data** by target vs. Neg ctrl ratio. Use TP and FP list1 for ROC analysis. **Remove the proteins below the cutoff**.

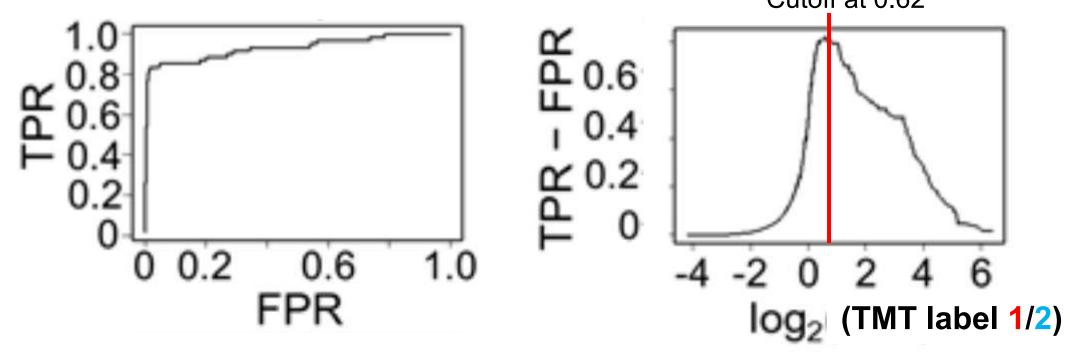
Step 1: determine target/neg ctrl cutoff

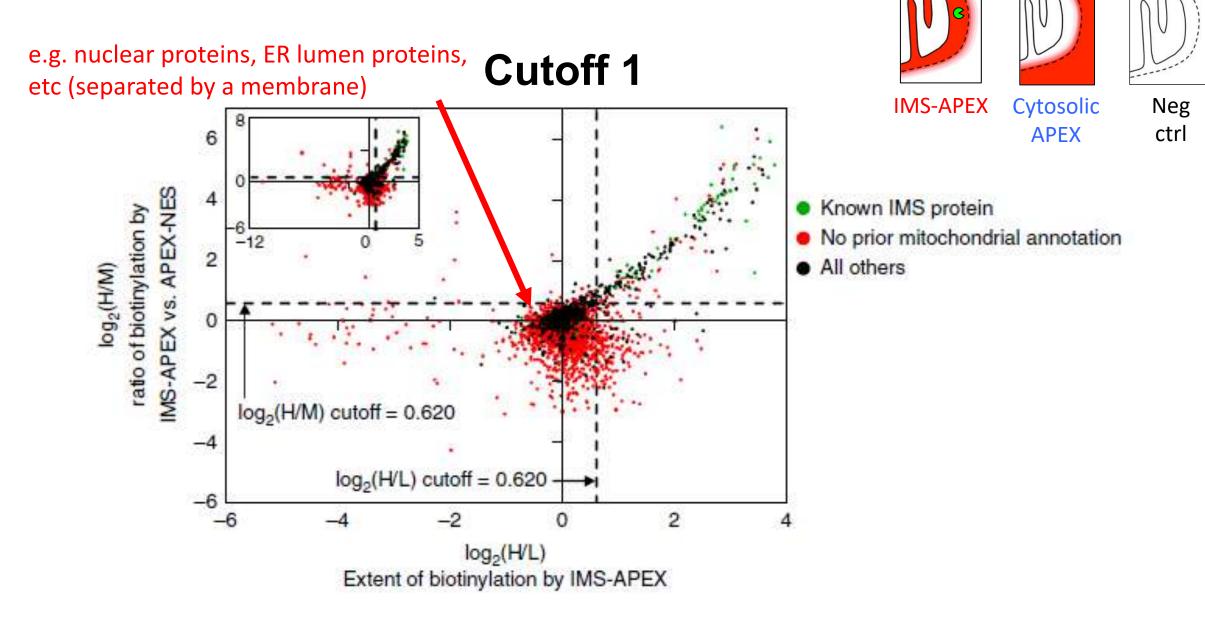
This cutoff gives a list of proteins that are enriched by target PL enzyme over nonspecific binders (i.e. proteins that are biotinylated by target).


Protocol: Rank **all the data** by target vs. Neg ctrl ratio. Use TP and FP list1 for ROC analysis. **Remove the proteins below the cutoff**.

Step 2: determine target/reference cutoff

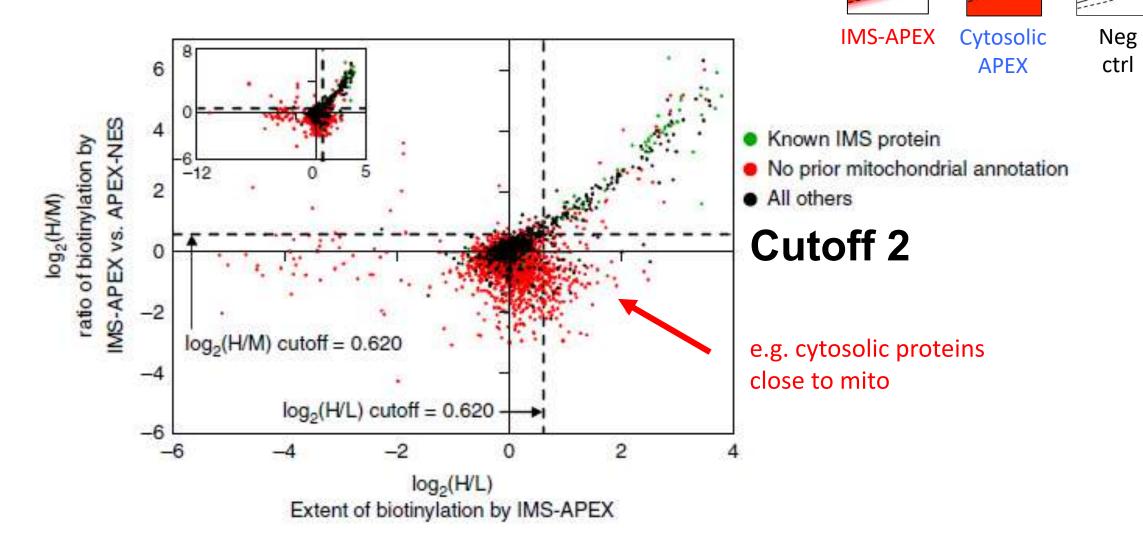
This cutoff gives a list of proteins that are PREFERENTIALLY enriched by target PL enzyme over reference PL enzyme.


Protocol: **Remove proteins after cutoff in step 1**. For the **remaining** data, rank the proteins by target vs. reference ratio. Use TP and FP list2 for ROC analysis.


Step 2: determine target/reference cutoff

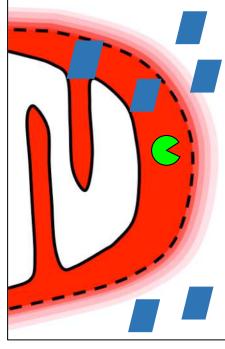
This cutoff gives a list of proteins that are PREFERENTIALLY enriched by target PL enzyme over reference PL enzyme.

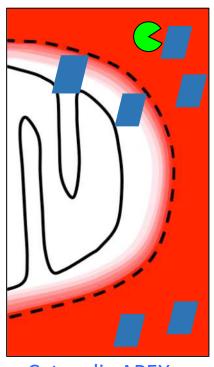
Protocol: **Remove proteins after cutoff in step 1**. For the **remaining** data, rank the proteins by target vs. reference ratio. Use TP and FP list2 for ROC analysis. Cutoff at 0.62



Three-state analysis

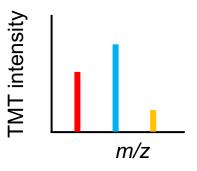
More examples: Hung et al. Mol Cell 2014; Loh et al Cell 2016; Han et al Cell Chem Biol 2017; Hung et al Elife 2017


Three-state analysis


More examples: Hung et al. Mol Cell 2014; Loh et al Cell 2016; Han et al Cell Chem Biol 2017; Hung et al Elife 2017

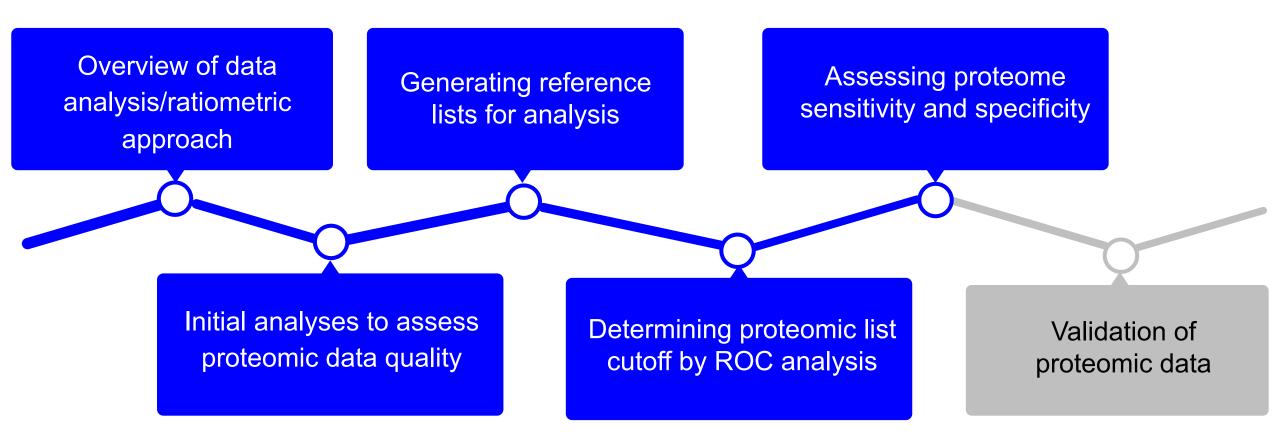
Limitations of ratiometric approach

Ratiometric approach (filtering by target vs. reference) may result in exclusion of dual-localized proteins, reducing coverage/sensitivity.


IMS-APEX

Cytosolic APEX

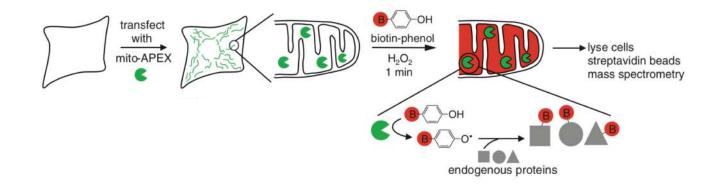
Example of an IMS protein that is filtered out by ratiometric approach


a dual-localized protein

Such proteins will pass cutoff 1, but not cutoff 2.

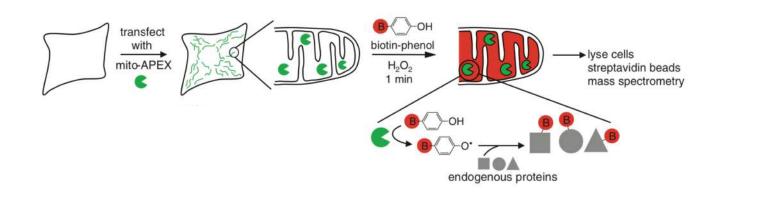
Proteomic data analysis for proximity labeling (PL) experiments:

Determining *sensitivity* of proteomic datasets

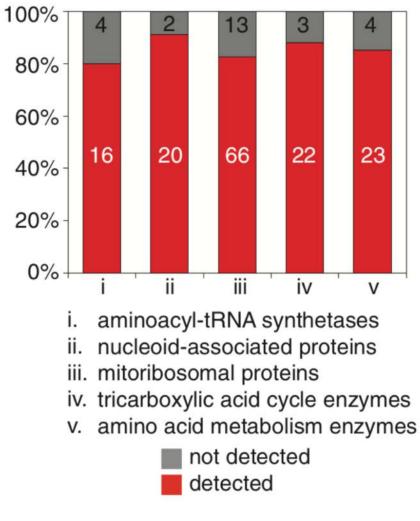

 The sensitivity of a dataset is defined as the fraction of true positive proteins recovered

Determining *sensitivity* of proteomic datasets

 The sensitivity of a dataset is defined as the fraction of true positive proteins recovered


Sensitivity= $\frac{\text{\# true positive proteins detected}}{\text{\# total true positive proteins}}$

Sensitivity analysis of mito matrix proteome (APEX)



• Compare list of detected proteins to groups of well-known mitochondrial matrix proteins

Sensitivity analysis of mito matrix proteome (APEX)

 Compare list of detected proteins to groups of well-known mitochondrial matrix proteins

Rhee et al. Science, 2013.

Determining *specificity* of proteomic datasets

• The specificity of a dataset is a measure of how well the proteomic hits align with target localization/functions

Specificity= $\frac{\text{\# of proteins in the final list with prior annotation}}{\text{\# total proteins in the final list}}$

Determining *specificity* of proteomic datasets

• The specificity of a dataset is a measure of how well the proteomic hits align with target localization/functions

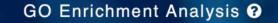
Specificity= # of proteins in the final list with prior annotation # total proteins in the final list

- Based on previous literature
- Based on previous annotations/databases
- Gene ontology analyses
- Clustering analyses

This generally represents a lower bound and the uncharacterized hits are potentially new biological discoveries.

Gene ontology analyses

Current release 2020-10-09: 44,264 GO terms I 8,049,377 annotations 1,568,086 gene products I 4,666 species (see statistics)


THE GENE ONTOLOGY RESOURCE

The mission of the GO Consortium is to develop a comprehensive, **computational model of biological systems**, ranging from the molecular to the organism level, across the multiplicity of species in the tree of life.

The Gene Ontology (GO) knowledgebase is the world's largest source of information on the functions of genes. This knowledge is both human-readable and machine-readable, and is a foundation for computational analysis of large-scale molecular biology and genetics experiments in biomedical research.

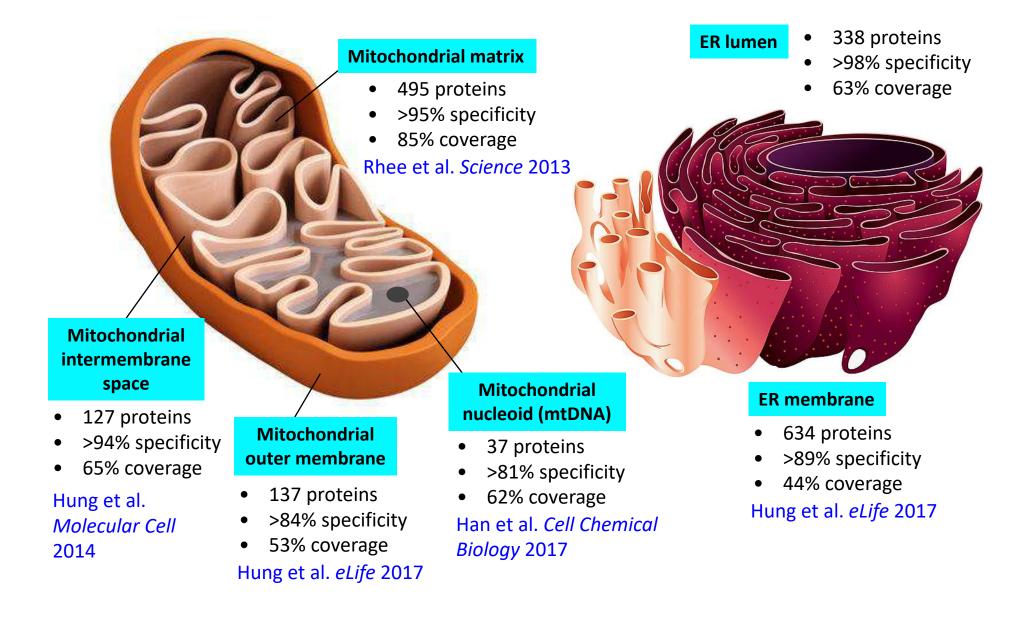
Search GO term or Gene Product in AmiGO ...

Any Ontology Gene Product

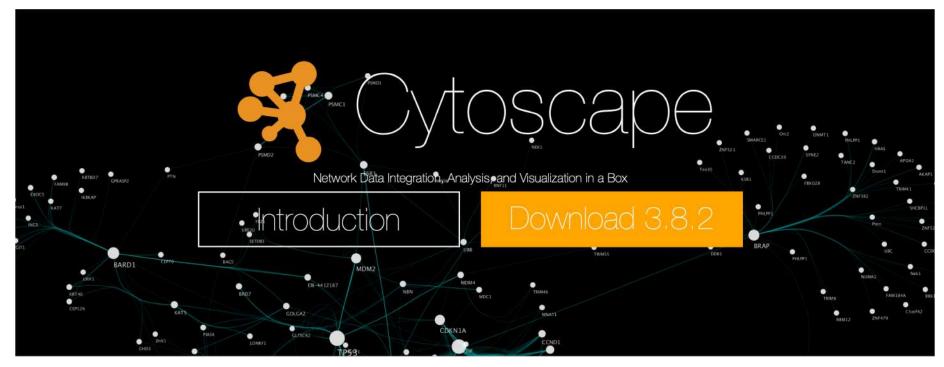


- Can search single genes or lists of genes simultaneously
- GO terms can be distinguished by biological process, molecular function, or cellular component

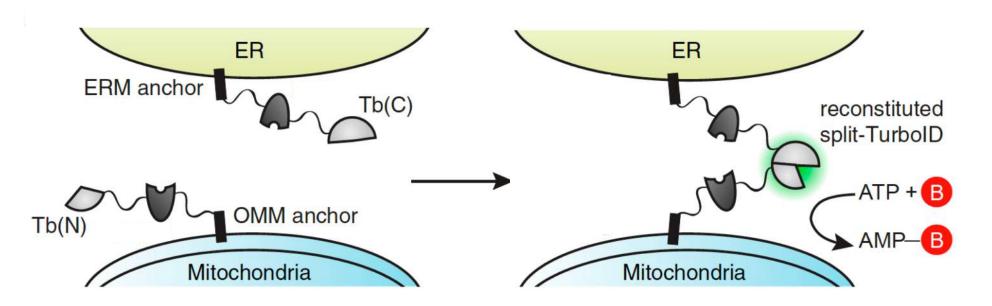
Q

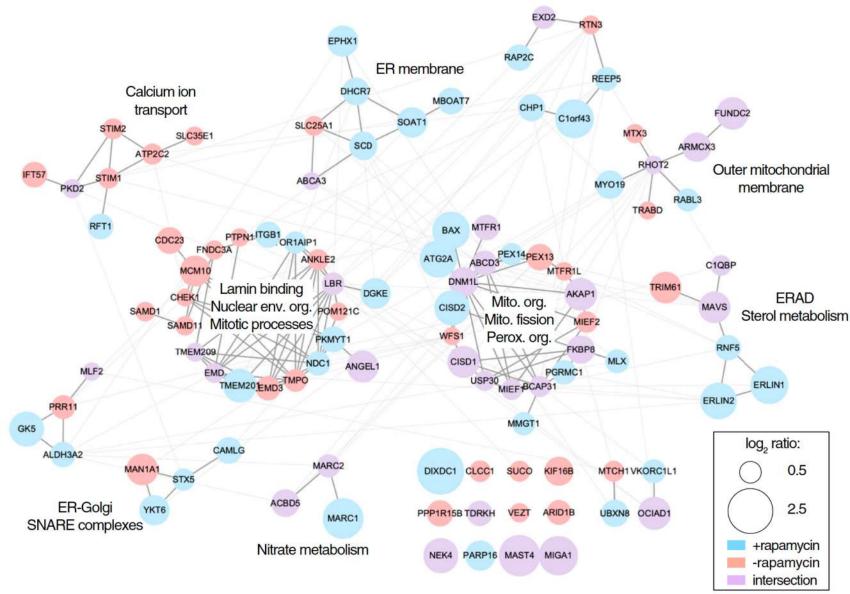

• GO terms can be sorted by species

Specificity analysis of mito matrix proteome (APEX)

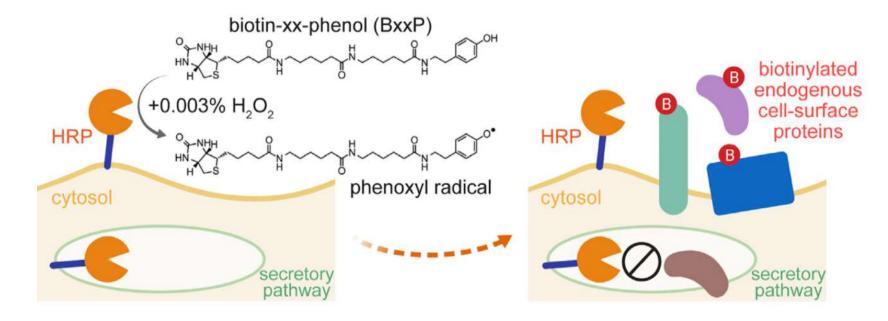


 APEX-generated proteome is highly specific for mitochondrial matrix proteins

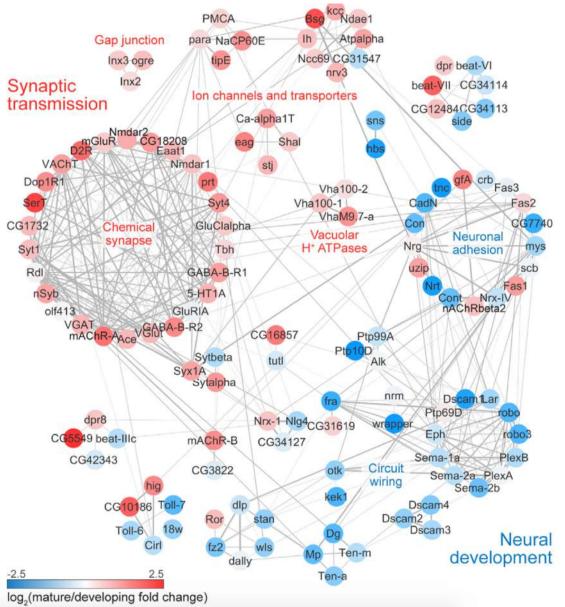

APEX organelle proteome sensitivity and specificity


Cytoscape is a useful tool for simple clustering

- Tool for data integration, analysis, and visualization
- Markov clustering using protein-protein interaction scores from the STRING (search tool for the retrieval of interacting genes/proteins) database



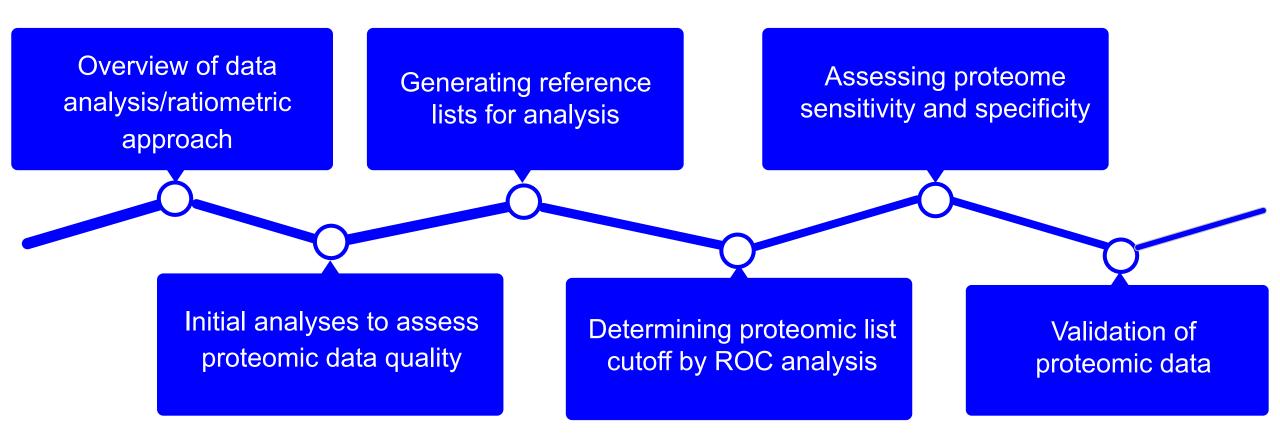
- Split-TurboID is targeted to the endoplasmic reticulum and outer mitochondrial membranes
- Reconstitution occurs specifically at organelle contact sites



 Clustering followed by GO term analysis shows both previously known and unknown functions of ER-mito contact sites

Cho et al. *PNAS*, 2020.

- HRP for cell surface labeling of olfactory projection neurons in fly brains (performed in both developing pupae and adults)
- BxxP is a membrane impermeant substrate for proximity labeling



 TMT-based quantification of proteomic hits shows changes in projection neuron cell surface proteomes in development and maturation

Li*, Han* et al. *Cell*, 2020.

Proteomic data analysis for proximity labeling (PL) experiments:

Validation of proteomic hits

• After specificity analysis, you will get a list of proteomic hits without prior annotations.

Novel hits v.s. false positives?

Validation of proteomic hits

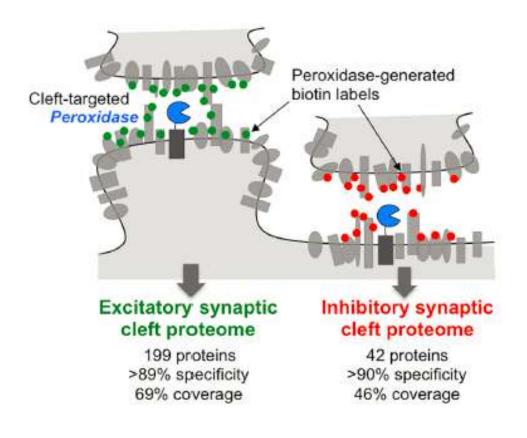
• After specificity analysis, you will get a list of proteomic hits without prior annotations.

Novel hits v.s. false positives?

- Use orthogonal strategies for validation.
 - For subcellular proteome mapping: Imaging, biochemical purification... For interactome mapping: IP, proximity ligation assay...

Validation of proteomic hits

• After specificity analysis, you will get a list of proteomic hits without prior annotations.

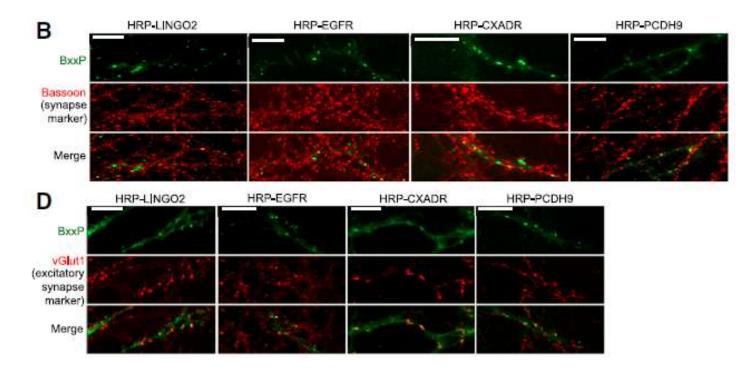

Novel hits v.s. false positives?

• Use orthogonal strategies for validation.

For subcellular proteome mapping: Imaging, biochemical purification... For interactome mapping: IP, proximity ligation assay...

• The selection of hits for validation could be guided by the availability of commercial antibodies and transgenes for recombinant expression.

Proteomic analysis of synaptic clefts



33 proteins with no previous literature assigning them to synapses

14 proteins selected for validation

Loh et al. Cell 2016

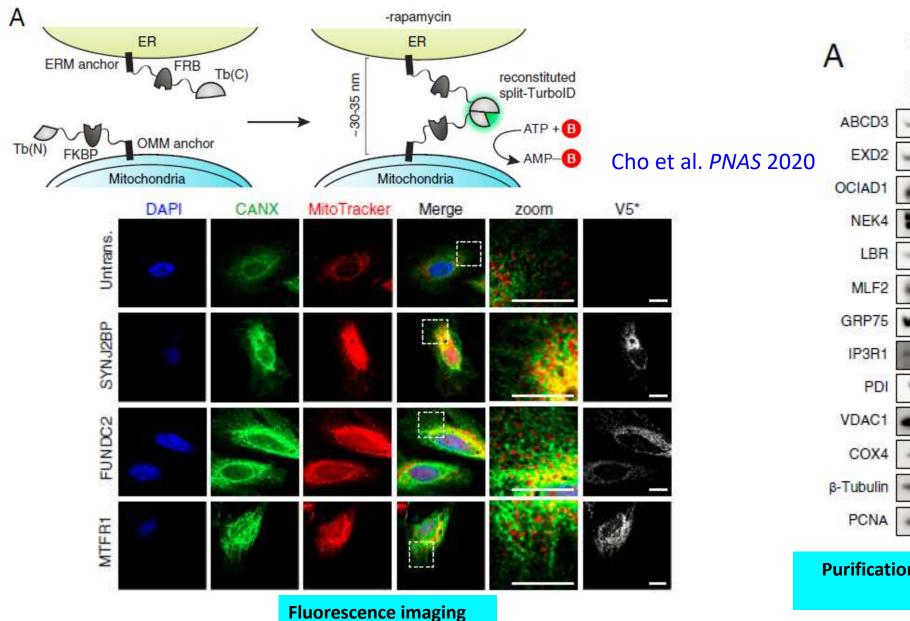
Validation of new synaptic proteins

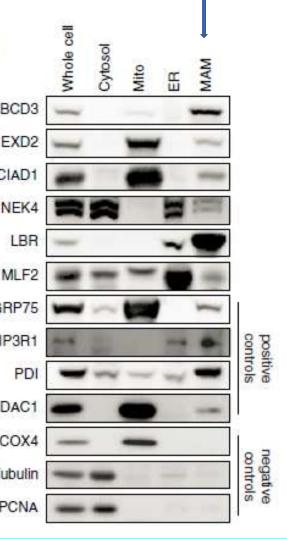
Fluorescence imaging

Purification of synaptosomes

Validation of new synaptic proteins

Synapse orphans	Evidence for synaptic localization					
	Imaging with Bassoon	Imaging with vGlut1	Immunoblot of synaptosomes			
LINGO2	Figure 5B	Figure 5D				
EGF receptor	Figure 5B	Figure 5D	Figure 5E			
CXADR	Figure 5B	Figure 5D				
Protocadherin-9 (PCDH9)	Figure 5B	Figure 5D				
BRINP3			Figure 5E			
Semaphorin-4A (SEMA4A)			Figure 5E			
NOTCH2	Figures 5G,H		Figure 5E			
Trophoblast glycoprotein (TPBG)			Figure 5E			
Zinc transporter ZIP10 (SLC39A10)			Figure 5E			
Integrin alpha-6 (ITGA6)			Figure 5E			


• 10 hits with positive validation.


• 2 hits were inconclusive.

(non-specific antibody for Notch3 and HRP tag disruption of surface trafficking for Matn2)

• 2 hits with negative results.

Validation of novel proteins at mito-ER contact sites

Purification of mitochondria-associated membranes

Functional validation

Gene	Human Ortholog	Molecular Feature	RNAi Phenotype	% Phenotypic Penetrance (n)
CG7166	-	immunoglobulin and fibronectin domains	ORN trajectory error and dorsal mistargeting	74.1 (58), 38.9 (54)
CG7466/Megf8	MEGF8	epidermal growth factor domain	ORN ventral mistargeting	62.0 (50), 40.6 (64)
CG7749/kug	FAT3	cadherin repeat	PN ventral mistargeting	98.0 (52), 62.0 (50)
CG17839	-	immunoglobulin and fibronectin domains	PN lateral mistargeting	48.1 (52), 37.5 (32)
CG33087/LRP1	LRP1	low-density lipoprotein receptor	PN and ORN local mistargeting	41.7 (48), 36.5 (52), 65.4 (52), 39.3 (28)
CG34353	LSAMP	immunoglobulin and fibronectin domains	ORN posterior mistargeting	22.9 (48), 21.2 (52)
CG2054/Cht2	CHIA	chitinase	ORN medial mistargeting	83.3 (54), 21.4 (42)
CG3036	-	anion transporter	ORN posterior mistargeting	34.0 (50), 40.3 (62)
CG3921/bark	-	scavenger receptor	PN and ORN local mistargeting	73.1 (52), 23.9 (46)
CG4645	YIPF1	Yip domain	ORN medial mistargeting	50.0 (50), 98.1 (54)*
CG6113/Lip4	LIPM	lipase	PN ventral mistargeting	92.0 (50), 30.0 (30)
CG6821/Lsp1γ	-	hemocyanin domain	global disruption	100.0 (24), 56.0 (50)
CG8460	CHID1	chitinase	ORN dorsal mistargeting	69.6 (56)
CG9565/Nep3	ECE1	neprilysin peptidase	ORN ventral mistargeting	68.5 (54), 60.7 (56)
CG9796/GILT1	IFI30	thiol reductase	PN and ORN local mistargeting	83.3 (36), 87.0 (54)
CG14234	TMEM198	-	PN and ORN local mistargeting	68.9 (58), 100.0 (58)*
CG14446/dtn	TMEM132E	-	ORN dorsal mistargeting	70.4 (54), 51.9 (52)
CG31998	-	<u>1997</u>	ORN dorsal mistargeting	70.0 (60), 50.0 (58)
CG34380/smal	DDR2	coagulation factor	PN random mistargeting	39.6 (48), 26.9 (52)
CG43737	-	-	ORN dorsal and PN random mistargeting	28.9 (52), 83.3 (54)

Human orthologs were searched by the FlyBase Homologs search tool. Only orthologs consistently identified by four or more databases are listed. Molecular features were searched through FlyBase and UniProt. The top 6 proteins in the table belong to families of classic wiring molecules based on their structural domains; the bottom 14 proteins come from molecular families not previously linked to neural development. The phenotypic penetrance of each RNAi is listed, with the number of antennal lobes examined in parentheses. An antennal lobe image of each RNAi is included in Figure S5. *, two cases where pan-neuronal RNAi was lethal and *PN-GAL4* was used instead to drive RNAi expression.

Li*, Han* et al. *Cell*, 2020.

Summary: proximity labeling data analysis

- The ratiometric approach can produce highly specific proteomes using proper spatial specificity controls
- True positive and negative lists should be generated based on prior knowledge of the proteome of interest
- Sensitivity and specificity analyses can inform on the quality of the proteome
- Novl proteomic hits can be validated (imaging, western blots, functional assays, etc.) for making new biological discoveries.
- Useful PL protocol resources: Hung et al. *Nature Protocols* 2016 and Cho et al. *Nature Protocols* 2020

PROTOCOL

Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2

Victoria Hung¹, Namrata D Udeshi², Stephanie S Lam¹, Ken H Loh¹, Kurt J Cox¹, Kayvon Pedram¹, Steven A Carr² & Alice Y Ting^{1,2}

¹Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA. ²Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. Correspondence should be addressed to A.Y.T. (ating@mit.edu).

Published online 11 February 2016; doi:10.1038/nprot.2016.018

Proximity labeling in mammalian cells with TurboID and split-TurboID

Kelvin F. Cho^{1,2,8}, Tess C. Branon^{3,8}, Namrata D. Udeshi⁶, Samuel A. Myers⁴, Steven A. Carr⁴ and Alice Y. Ting⁶^{2,5,6,7}

Protocol Published: 02 November 2020

Proximity labeling in mammalian cells with TurboID and split-TurboID

Kelvin F. Cho, Tess C. Branon, Namrata D. Udeshi, Samuel A. Myers, Steven A. Carr & Alice Y. Ting 🖂

Nature Protocols (2020) Cite this article

Supplementary information

Reporting Summary

Supplementary Table 1

Human proteome of proteins, annotated by whether each protein was previously detected in a PL proteomic experiment from our lab (regions include: mitochondrial matrix^{6,15}, mitochondrial intermembrane space⁷⁶, mitochondrial nucleoid⁷⁷, ER membrane^{6,7,78}, outer mitochondrial membrane^{7,78}, ER-mitochondria contact sites^{7,78}, nucleus⁶, synaptic cleft²⁰, and cytosol^{6,7,78}). For each protein, the compartment(s) in which they were detected are listed.

Supplementary Table 2

Compilation of data from previous PL proteomic mapping experiments performed by our lab, categorized by organelle/region of interest (each tab is a different subcellular compartment). In each tab, the relevant studies and corresponding enrichment ratios (SILAC, TMT, or iTRAQ) for proteins detected above the respective cutoffs are provided. Data are included for the mitochondrial matrix^{6,15} (Tab 1), mitochondrial intermembrane space⁷⁶ (Tab 2), mitochondrial nucleoid⁷⁷ (Tab 3), ER membrane^{6,7,78} (Tab 4), outer mitochondrial membrane^{7,78} (Tab 5), ER-mitochondria contact sites^{7,78} (Tab 6), nucleus⁶ (Tab 7), synaptic cleft²⁰ (Tab 8), and cytosol^{6,7,78} (Tab 9).

 Compilation of proteomic mapping data of subcellular compartments from previous Ting lab studies

Tab	Compartment	Studies	Enzyme	Details/Definitions
		 Rhee, H. W. <i>et al.</i> Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. <i>Science</i>. 339, 1328–1331 (2013). 	APEX	30m BP, 1m H2O2; SILAC; negatives: omit APEX (rep 1) and omit BP/H2O2 (rep 2)
			BiolD	18h biotin (BioID); TMT; 126: BioID (mito matrix); 127: omit biotin (rep 1); 130: BioID (mito matrix); 131: omit ligase (rep 2)
			TurbolD	10m biotin (TurbolD); TMT; 128: TurbolD (mito matrix); 129: omit biotin (rep 1); 129: TurbolD (mito matrix); 126: omit ligase (rep 2)
1	mitochondrial matrix	Branon, T. C. <i>et al.</i> Efficient proximity labeling in living cells and organisms with TurbolD. <i>Nature Biotechnology</i> 36 , 880–898 (2018).	miniTurbo	10m biotin (miniTurbo); TMT; 130: miniTurbo (mito matrix); 131: omit biotin (rep 1); 127: miniTurbo (mito matrix); 126: omit ligase (rep 2)
2	mitochondrial intermembrane space (IMS)	Hung, V. <i>et al.</i> Proteomic Mapping of the Human Mitochondrial Intermembrane Space in Live Cells via Ratiometric APEX Tagging. <i>Mol. Cell</i> 55 , 332–341 (2014).	ΑΡΕΧ	30m BP, 1m H2O2; SILAC; H: IMS-APEX, M: APEX-NES, L: omit APEX
3	mitochondrial nucleoid	Han, S. <i>et al.</i> Proximity Biotinylation as a Method for Mapping Proteins Associated with mtDNA in Living Cells. <i>Cell Chem.</i> <i>Biol.</i> 24 , 404–414 (2017).	APEX	30m BP, 1m H2O2; TMT; 126, 129: Twinkle APEX (Rep 1, 2); 127, 130: Mito-APEX (Rep 1, 2); 128: omit H2O2 (rep 1); 131: omit APEX (rep 2)
		Hung, V. <i>et al.</i> Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation. eLife 6 , (2017).	ΑΡΕΧ	30m BP, 1m H2O2; SILAC; H: ERM-APEX, M: APEX-NES, L: omit APEX (rep 1); L: omit H2O2 (rep2)

Compartments:

- Mito matrix
- Mito IMS
- Mito nucleoid
- ER membrane
- Outer mito membrane
- ER-mito contacts
- Nucleus
- Synaptic cleft
- Cytosol

		Hung et	al, 2017	Cho et a		
Uniprot		Log2 SILAC Ratio (H/M)	Log2 SILAC Ratio (H/M)	Log2 TMT Ratio	Log2 TMT Ratio	[BioID] Log2
Accession	Gene Names	Rep 1	Rep 2	(127C/126C) Rep 1	(127C/127N) Rep 2	(127N/:
Q9NRG9;Q9NR						
G9-						
2;F8VZ44;H3B						
U82	AAAS	0.407730429	0.339073894	1.19	1.365	0.70
Q9NY61	AATF					
Q99758	ABCA3			1.039	1.169	
P33527	ABCC1					1.01
E7EUE1;P2828						
8;F5GYC1;P282						
88-2	ABCD3	0.181320587	0.203804229	1.205	1.314	1.76
Q8NFV4	ABHD11					1.44
Q8N2K0-2	ABHD12					1.09
Q9BV23	ABHD6	0.638164182	0.507966575			0.93
Q9H3P7	ACBD3	0.84980351	0.565230436	0.999	1.14	1.46
Q5T8D3-						
3;Q5T8D3-						
2;Q5T8D3;Q5T						
8D3-						
4;B7Z2A7;Q5T						
8E0	ACBD5	0.617811456	0.700803556	1.01	1.039	0.81
S4R3H4	ACIN1					
Q86TX2	ACOT1					1
P49753	ACOT2					
Q8N9L9	ACOT4					

 Corresponding ratios (SILAC, TMT, etc.) are listed for the proteins that were detected in the indicated study

Identifiers		entifiers 1st compartment 2nd compartment detected detected		•	nent 3rd compartment detected						
UniProt Accession ID	Gene ID	Gene Name	Protein Name	Compartment 1	Reference 1	Compartment 2	Reference 2	Compartment 3	Reference 3	Compartment 4	R
Q9NRG9	8086	AAAS	Aladin	ERM	Tab 4 (Hung et al, 2017)	ERM	Tab 4 (Branon et al, 2018) (BioID)	ERM	Tab 4 (Branon et al, 2018) (TurboID 10m)	ERM	Tab 4 2018
Q86V21	65985	AACS	Acetoacetyl-CoA synthetase	nucleus	Tab 7 (Branon et al, 2018) (TurbolD)	nucleus	Tab 7 (Branon et al, 2018) (miniTurbo)	cytosol	Tab 9 (Hung et al, 2017)		
P22760	13	AADAC	Arylacetamide deacetylase			A 13 PH 18 223 (224)					1.000
Q6P093	344752	AADACL2	Arylacetamide deacetylase-like 2				8				S. 6.
Q5VUY0	126767	AADACL3	Arylacetamide deacetylase-like 3								14.42
Q5VUY2	343066	AADACL4	Arylacetamide deacetylase-like 4								
Q8N5Z0	51166	AADAT	Kynurenine/alpha-aminoadipate aminotransferase, mitochondrial								
			Alpha- and gamma-adaptin-binding		Tab 7 (Branon et al,		Tab 7 (Branon et al,		Tab 7 (Branon et al,		Tab 9

 In the 2nd spreadsheet, you can search by protein name and see whether we have detected it before, and if so, in which cellular compartment; references to the first sheet for specific data

Identifiers		1st compartment detected		2nd compartment detected		3rd compartment detected					
UniProt Accession ID	Gene ID	Gene Name	Protein Name	Compartment 1	Reference 1	Compartment 2	Reference 2	Compartment 3	Reference 3	Compartment 4	R
Q9NRG9	8086	AAAS	Aladin	ERM	Tab 4 (Hung et al, 2017)	ERM	Tab 4 (Branon et al, 2018) (BioID)	ERM	Tab 4 (Branon et al, 2018) (TurbolD 10m)	ERM	Tab 4 2018
Q86V21	65985	AACS	Acetoacetyl-CoA synthetase	nucleus	Tab 7 (Branon et al, 2018) (TurbolD)	nucleus	Tab 7 (Branon et al, 2018) (miniTurbo)	cytosol	Tab 9 (Hung et al, 2017)		
P22760	13	AADAC	Arylacetamide deacetylase								
Q6P093	344752	AADACL2	Arylacetamide deacetylase-like 2								
Q5VUY0	126767	AADACL3	Arylacetamide deacetylase-like 3								
Q5VUY2	343066	AADACL4	Arylacetamide deacetylase-like 4								
Q8N5Z0	51166	AADAT	Kynurenine/alpha-aminoadipate aminotransferase, mitochondrial								
			Alpha- and gamma-adaptin-binding		Tab 7 (Branon et al,		Tab 7 (Branon et al,		Tab 7 (Branon et al,		Tab 9
			- /	oj.coco.				,			

		4 7
P57105 55333 SYNJ2BP Synaptojanin-2-binding protein mitochondrial IMS Tab 2 (Hung et al, 2014) ERM Tab 4 (Hung et al, 2017) OMM Tab 5 (Hung et al, 2017)	ER-mito contacts	lab

 In the 2nd spreadsheet, you can search by protein name and see whether we have detected it before, and if so, in which cellular compartment; references to the first sheet for specific data

Acknowledgement

Dr. Alice Ting Dr. Liqun Luo

Panelists: Kelvin Cho, Boxuan Zhao, Wei Qin, Jiefu Li, Tess Branon

PROTOCOL

Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2

Victoria Hung¹, Namrata D Udeshi², Stephanie S Lam¹, Ken H Loh¹, Kurt J Cox¹, Kayvon Pedram¹, Steven A Carr² & Alice Y Ting^{1,2}

¹Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridg Massachusetts, USA. Correspondence should be addressed to A.Y.T. (ating@mit.edu

Published online 11 February 2016; doi:10.1038/nprot.2016.018

PROTOCOL https://doi.org/10.1038/s41596-020-0399-0

Check for updates

Proximity labeling in mammalian cells with TurboID and split-TurboID

Kelvin F. Cho^{1,2,8}, Tess C. Branon^{3,8}, Namrata D. Udeshi⁶, Samuel A. Myers⁴, Steven A. Carr⁴ and Alice Y. Ting^{2,5,6,7}